
Technical Report 8004

Technical Report (Final)AD-A218 694 Issued May 31, 1988
Duration October 1, 1987 to March 31, 1988

Prepared Under
S- ,,* Contract Number DAAB07-87-C-A035

PHASE I FINAL REPORT

Army 'Final Report of
Army SB1R Phase I Project

Advanced Facilities to Expedite Design andEvaluation of Communications Systems

Prepared For

Frank Giordano, Project Leader
US Army CECOM

Fort Monmouth, NJ 07703

by

Information Research Associates
911 West 29th Street
Austin, Texas 78705

Doug M. Neuse
Principal Investigator

The view, opinions, and/or findings contained in this report are those of the
authors and should not be construed as an official Department of the Army
position, policy, or decision, unless designated by other documentation.

, -.. , .t

A : : j-. . .. ;.__ ..

CECOM COMMUNICATIONS MODELING PROJECT
PHASE I FINAL REPORT

TABLE OF CONTENTS

Abstract... 1

1.0 Introduction ... 2

2.0 Problem Statement.. 4

3.0 Research Approach ... 6

3.1 Requirements and Experimentation Specification................... 6
3.2 Model Implementation and Experimentation 6
3.3 Enhancement Specification ... 7
3.4 Training ... 8

4.0 Previous Related Work... 9

5.0 Modeling and Experimental Evaluation Results 11

5.1 Data Link Control Protocol ... 11
5.2 Switching Network Model.. 13
5.3 Communications Switch Model... 16

6.0 Summary of Enhancement Specification 19

7.0 Conclusions .. 21

8.0 References.. 22

Appendix A: Modeling and Experimental Evaluation Report A-i

Appendix B: C/PAWS Enhancement Specification................................. B-1

Appendix C: Outline of PAWS and GPSM... C-i

cc i7

fTh;

ABSTRACT

This report describes the technical accomplishments and results of the Army CECOM

sponsored SBIR Project "Advanced Facilities to Expedite Design and Evaluation of
Communications Systems":- The goal of this project was to determine the feasibility of an
approach to high level simulation modeling of communications system. The approach is to
adapt ES/PAWS, a top-down design tool for electronic systems being developed for the
Navy [NAV 87, BRO 88]. The ES/PAWS tool is based on existing machine simulation
products developed by Information Research Associates (IRA). These products, PAWS
and GPSM [IRA 87a, IRA 87b], offer high-level visual and declarative facilities for
constructing simulation models.

We have 1) evaluated the requirements for a powerful high-level modeling tool for
communications systems; 2) constructed several experimental models to gain further insight
into the issues arising in communications system modeling, and drawn upon IRA's
substantial previous work in this ara and 3) specified the enhancements required to

ES/PAWS in order to construct an eftective high-level communication modeling tool, to be

called C/PAWS.

We have established that the ES/PAWS tool currently under development will provide

many powe;rful features useful for communications modeling. As part of the ES/PAWS
development the graphical interface, GPSM, will also be substantially enhanced. We have
further specified that C/PAWS will contain many advanced high-level features for

communications modeling, including provision for libraries of re-usable submodels and C
functions, for modeling common communication components and algorithms. The

C/PAWS tool will also provide user-definable icons, improved graphical output of
simulation results, and specialized support for modeling communication features such as
timeouts and component failures.

The strategy of adapting ongoing development work and specializing it for communications

system modeling has been established as a very efficient and cost-effective approach to

developing C/PAWS. Based on the promising finding of these preliminary studies, we

recommend the development of a prototype system for advanced modeling and evaluation

of communications systems.

-1-

1.0 Introduction

This report describes the technical accomplishments and results of the Army CECOM

sponsored SBIR Project "Advanced Facilities to Expedite Design and Evaluation of

Communications Systems". The goal of this project was to determine the feasibility of an

approach to high level simulation modeling of communications systems. The approach is

to adapt ES/PAWS, a top-down design tool for eiectronic systems being developed for the

Navy [NAV 87, BRO 881. The ES/PAWS tool is based on existing mature simulation

products developed by Information Research Associates (IRA). These products, PAWS

and GPSM (IRA 87a, IRA 87b], offer high-level visual and declarative facilities for

constructing simulation models.

ES/PAWS is to be a major new product offering from IF A that will build upon the highly

effective modeling facilities of PAWS and GPSM. It will provide the expressiveness of the

C language, support for macro pre-processing and finite ,tate machine specification,

submodel parameterization, and an enhanced version of GPSM which includes a graph

library facility, improved on-line help, and a structured input facility. The simulation tool

proposed for the Army, called C/PAWS, will enhance ES/PAWS to provide even more

powerful facilities for modeling communication systems.

The problem statement and the research approach are described in sections 2.0, and 3.0.

There has been a substantial amount of previous work in this area by IRA and IRA clients.

This experience has been used in this project, particularly in the area of modeling the effect

of failures in distributed systems, as described in section 4.0.

The project accomplished several tasks, the - being the evaluation of the requirements

for a powerful high-level modeling tool for Army communication systems [IRA 88]. The

succeeding tasks included simulation modeling and experimental evaluation of some

rel:Zsentative Army communications system, and specification of the enhancements

required to ES/PAWS in order to make modeling of communications systems even easier

and more efficient.

The object of the modeling and experimental evaluation task of this project was to construct

prototype models of some aspects of Army communications systems. These include

models of communications components, protocol and algorithms from several different

layers of the communications systems and included the modeling of the effect of failures on

-2-

the system. The principal results of this task are summarized in section 5.0, and the report

describing the modeling experimental evaluation task is included as an attachment to this

report.

The enhancement specification task discussed the features and enhancements required to

ES/PAWS in order to make C/PAWS an elegant high-level simulation tool for Army

communications systems. Since the actual implementation of C/PAWS is to be done in a

Phase II project, the specification discussed the functional enhancements required, rather

than specifying the implementation strategy. The principal results of this task are

summarized in section 6.0, and the C/PAWS enhancement specification is included as an

attachment to this report

The previous work done by IRA in this area, the experimental evaluation, and the

enhancements specified for ES/PAWS have established the feasibility of using C/PAWS to
model the Army communications systems. Adapting the ongoing ES/PAWS development

work for C/PAWS is a particularly efficient and cost-effective approach to building a
specialized communications modeling tool. Based upon the promising findings of these

preliminary studies, we recommend the development of a prototype system for advanced

modeling and evaluation of communications systems.

-3-

2.0 Problem Statement

The general problem area addressed by this project was the modeling of communications

networks of interest to the United States Army, The specific problem was:

a) to assess the feasibility of using a prototype modeling tool, ES/PAWS, to

satisfy the requirements of the U.S i'amy for rapid and effective modeling of

such networks, and

b) to determine any enhancements to tdis tool necessary for such modeling.

ES/PAWS is a tool for top-down design and analysis of electronics systems. It is being

developed under a Phase II SBIR grant from the Un:ited States Navy, and :',based upon the

Performance Analyst's Workbench System (PAWS) [IRA 87a] and Graphical

Programming of Simulation Models (GPSM), [IRA 87b].

PAWS is a successful, commercially available simulation language. It provides a high-

level declarative specification language that reduces modeling errors and speeds model

development compared to traditional procedural imula"on languages. GPSM is the

graphical front end to PAWS. It allows the user to develop PAWS models by drawing

pictures (the pictures ar the models), thereby reducing modeling errors and speeding
model development further. GPSM also provides excellent presentation materials

(pictures) for these models (see appendix C).

The modeling of U.S. Army communications networks has unusual requirements.

a) The performance of commercial systems is primarily concerned with Qrimalil
under rather stable operating conditions. The performance of military systems

is primarily concerned with a under dynamic conditinns.

b) Performance in the presence of faults and performance with degraded resources

are of prime importance.

c) Since so many communications protocols and routing algorithms are in use, an

effective communications modeling tool requires a library of submodels for

-4-

such protocols and algorithms, with a capability for user modification of this

library.

d) The network requirements change rapidly. Protocols and muting algorithms

must be designed and analyzed rapidly. Models of these protocols and routing

algorkhms must therefore support corectness validation as well as performance

analysis.

-5-

3.0 Research Approach

The approach we took to this problem is described below.

3.1 Requirements and Experimentation Specification.

The first task in this project was to spec.fy the requirements for the graphical interface,
simulation system and submodel library, and to define a plan for experimental
demonstration of the modeling system. IRA representatives visited CECOM early in this
project. We interviewed representatives of CECOM and obtained documents describing

Army communications systems and modeling procedures. We studied the documents and

professional literature in this area, and discussed our ideas with CECOM staff and with
Professor Simon Lam, a noted expert in analysis of communication systems.

Basc upon these interviews, analysis of the documents and literature, and discussions with
CECOM staff and Professor Lam, we prepared a requirements and experimentation

specification report [IRA 88].

The requirements included the following:

a) suitability for use by communications engineers as well as network designers

and analysts, and

b) ability to model and evaluate a variety of networks including:

circuit-switched networks,
TDMA networks,

packet-switched networks,
net radio, and

message-switched networks.

3.2 Model Implementation and Experimentation

The next task in this project was to implement and execute a collection of PAWS/GPSM

communications models for the purpose of evaluating the effectiveness of PAWS/GPSM

-6-

and ES/PAWS for communications networks. The models implemented and executed

included the following:

a) a data link control protocol

b) a circuit-switched network with the following routing schemes:

static shortest path routing

a distributed adaptive algorithm

flooding

static shortest path routing in presence of failures

c) a communications switching element.

The execution of these models demonstrated that it is feasible to model many aspects of

communications systems using PAWS. Several issues were raised during this task, and

some limitations were found in PAWS, many of which will be overcome in ES/PAWS.

The modeling and experimental evaluation are discussed in detail in the Appendices.

3.3 Enhancement Specification

The last major task in this project was to specify the enhancements to PAWSIGPSM and

EF'P .WS requ,'ired f-. an effe:ivz tool for mee;ng Army communications networks.

Many of the enhancements will become available as part of ES/PAWS later this year. The

enhancement specifications were produced as follows:

a) evaluating the shortcomings of the mcdekl desc bed in section 5 and Appendix

A

b) studying the enhancements already underway as part of the ES/PAWS project,

and

c) developing specifications to bridge the gap between ES/PAWS and the Army

modeling requirements.

The recommended enhancements are discussed further in section 6 and Appendix B.

-7-

3.4 Training

IRA will train CECOM staff in the use of the PAWS/GPSM communications models

developed during this project. The purpose of this training is to allow the CECOM staff to

gain familiarity with the use of such models, and to assist IRA in specifying modeling tool

enhancements to be implemented i,. Phase 1I of this project.

4.0 Previous Related Work

There has been a substantial amount of modeling done in this area by IRA and IRA clients

using PAWS and GPSM. We have drawn upon this experience during this study.

Some of this work indicates how PAWS and GPSM can be applied at any level of

abstraction for modeling communication system components. At the physical layer of the

OSI model [TAN 81], communication involves the transmission of bits over some

(possibly error-prone) medium. A detailed model of the performance of an SNA

communication line has been constructed using PAWS [DOR 84].

It is also possible to model an aspect of the OSI layer 1 and layer 2 interface, i.e., the

communications hardware used to transmit and receive data from the communications

medium. Typically this hardware is largely encapsulated in an IC chip that can also provide

fairly sophisticated services such as zero insertion/deletion, generation of packet headers

and check sums, and framing of incoming data. A model of a specialized high-speed VLSI

communications chip has been constructed at IRA [JAI 87]. The chip consist of an 8-bit

processor, high-speed serial communication controller, on-chip RAM and ROM, and

interface to the host system CPU. The on-chip processor executes software.for an OSI

layer 2 (data link control) protocol. A model of the chip hardware was constructed in less

than ten days and was verified in a few days by comparing emulation results with

experimental data.

The performance of various layers of the OSI communications model has been studied.

The performance of packet-switched inter-processor communications has been modeled

[UPC 84] for a reconfigurable database machine architecture with dynamic connection of

processor to memory via a regular SW-banyan blocking network. A model for predicting

the peak and average response times for a cluster of VAX I 1/780s at the link of a network

with a star topology has also been constructed using PAWS [IRA 86]. The impact of

communications services on overall system performance has been studied for a real-time

point-of-sale system using PAWS [AND 84]. This model predicted significant

performance improvement by inccasing communication line speed from 4800 to 9600

baud.

Several studies by IRA and IRA clients have included modeling of failures in distributed

systems. Performance models of a distributed real-time command and control system are

-9-

described in [FER 84, PAL 85]. These models include simulation of fault injection,

propagation, and recovery. The models address the performance of ansaction cormTmit

protocols in a distributed environment, and include submodels of a network interface, a

long distance communication link, and a local area network (Ethernet). The model showed

that resource contention at a remote host could cause as serious a performance degradation

as a failure. It was also sho-,n that an adaptive timeout mechanism can improve

performance by minimizing "spurious" timeouts due to resource contention.

The performance of a token-passing ring and a reconfigurable lookahead network in the

presence of failures has been modeled using PAWS [VEL 86]. This study also examines

the performance of a failsafe distributed routing protocol in the presence of node and link

failures. A study conducted by an IRA client models the performance of a Sperry 1100/44

based system with multiple command, arithmetic and peripheral processors used for real-

time computations [CON 86]. This model considers the effect of failures on the execution

of real-time tasks.

The experience gained from these previous studies has been very helpful in evaluating the

feasibility of using C/PAWS for modeling Army communication systems. The work on

failure modeling [FER 84, PAL 85, VEL 86, CON 86] has been particularly" relevant for

appreciating the effectiveness of PAWS in this area. These studies demonstrate that

PAWS/GPSM can and has been used effectively for modeling many aspects of

communications systems at any desired level of abstraction.

-10-

5.0 Modeling and Experimental Evaluation Results

The emphasis of the modeling and experimental evaluation task of this project was to
determine the limitations of using the current versions of GPSM (2.3) and PAWS (3.0) for
modeling communications systems. It should be noted that the objective of the experiments
was not to construct prcduction-quality simulation models. The effort was focussed on

discovering the enhancements required to PAWS and GPSM, rather than on constructing
sophisticated or efficient models.

Simulation models for the following communications system components have been
constructed and evaluated for this study:

1) A data link control protocol

2) A circuit-switched communications network with the following routing

schemes:
a) Static Shortest Path Routing
b) A Distributed Adaptive Algorithm
c) Flooding
d) Static Shortest Path Routing in presence of failures

3) A communications switching element

Although these models were constructed with certain types of communication networks in
mind, they address issues common to a wide range of network modeling situations. The
modeling and experimental evaluation report attached to this report discusses the models
that were constructed, the simulation results obtained, and the insights gained from this
experience. In this section we summarize the findings of the modeling task.

5.1 Data Link Control Protocol

The top-level GPSM graph for this model is shown in Fig. 1.

-11 -

4c4

060

-c a

66K

U'0

It seems clear that the key aspects of data link protocols can be modeled in PAWS. This

modeling will become even easier and more convenient in ES/PAWS, which will retain the

declarative and visual programming aspects of PAWS and GPSM, and in addition provide

the convenience and expressiveness of the C programming language.

An important aspect of this model is that it addresses issues such as timeouts, flow control,

and message loss, which occur not only in the data link communications layer but also in

other layers of the OSI model.

The model can be extended quite easily to deal with protocols with larger window sizes. If

a specialized node type is developed to represent timeouts, as suggested in the enhancement

specification, this type of modeling will become quite easy in C/PAWS.

5.2 Switching Network Model

The primary objective of the model is to investigate the effect of routing algorithms on the

performance of circuit-switched networks. However, it should be noted that the

performance issues involved in non-hierarchical routing in circuit-switched networks are

very similar to those involved in routing for packet-switched networks [SCI 87]. Thus by

restricting attention to non-hierarchical routing algorithms, the model can be used for both

circuit-switched and packet-switched networks, possibly with a small amount of

modification. The top-level GPSM graph for this model is shown in Fig. 2.

-13-

Ei El1~
4o -
C

4 4 4

* C 0

0

.--)

C0

- a"

==

1-14

The network routing function is encapsulated in the PAWS submodel cswitch Three

different classes of routing algorithms were modeled. These represent very different types

of routing criteria--ranging from minimizing response time to achieving maximum

reliability. We have chosen to implement an instance of each type of algorithm in order to

determine the feasibility of modeling that class. The algorithms modeled are:

1) Static Shortest Path Routing

2) A Distributed Adaptive Algorithm (Hot Potato)

3) Flooding

4) Static Shortest Path Routing with Failures

The routing algorithms were all run on the same example network [SCH 87].

It was found that all of these algorithms could be modeled fairly easily. All changes to the

model were encapsulated in the submodel switch The basic structure of this submodel

remained the same for the different algorithms (except for the failure case), requiring

changes only to the routing calculation.

Some of the issues raised by these models are summarized below:

1) C function utilities for calculating model parameters (eg. shortest paths) will be

useful to the model developer

2) Hot potato routing was easy to implement as the key parameters required were

conveniently available; in ES/PAWS this capability will be expanded.

3) Collecting response time statistics for an algorithm such as flooding can be made

easier if more flexible FORKIJOIN constructs are provided in C/PAWS.

4) Verifying model correctness is not trivial, and support from the simulation tool is

desirable.

5) It is important to distinguish between the model user and the model developer.

The developer's interface should emphasize flexibility and power. The user's

interface should emphasize simplicity.

-15-

6) Failure modeling can be modeled adequately.

5.3 Communications Switch Model

The switching element model studies the behavior of a switch in a circuit-switched

network. The switch receives call requests from stations connected to it, and attempts to

assign outgoing lines to satisfy these requests. Eventually all outgoing lines .are allocated,

and further incoming requests are called "lost calls". This model estimates connect time for

a simple queued mode (lost calls delayed) circuit switch. The GPSM graph for this model

is shown in Fig. 3.

-16-

S r T

44

CC

Cu 1

441

17-

This model is a simple but fairly useful simulation of queued mode call processing for

communication between two network switches. It is quite easy to generalize to the case
where there are M switches with a different number of links between switch A and other

switches by using arrays of SERVICE and ALLOCATE nodes. Since this can clearly be

done within PAWS it was not pursued.

Ai interesting point is that to be accurate in the case where there is more tharl one switch to

which switch A is connected, the "background" traffic in the network needs to be

simulated. Since the call processing scenario is deterministic, the background processing

can be calculated quite accurately for a certain network node, and fed as transactions that

interfere with A-B communication at nodes switchA and switch B This approach will give

a more realistic estimate of network behavior, without the complexity of detailed

simulation. In this way a much more complicated situation can be modeled with fairly

small changes to the model.

-18-

6.0 Summary of Enhancement Specification

ES/PAWS and CPAWS will be more flexible and powerful than the currently existing

PAWS software and, in particular, will incorporate the expressiveness of the C

programming language. Through the use of the highly user-friendly graphical interface,
GPSM, and the use of libraries of submodels and procedures, a user will be able to
simulate complex communications systems without needing, in general, to write code.

Creating and maintaining the submodels and associated procedures, however, will require
some familiarity with ES/PAWS syntax; these steps would be carried out by a model
developer rather than a model user (see Appendix A, sec. 3.1).

Using C/PAWS the user will be able to obtain detailed simulation results; these results can
then be input to other software packages such as SAS or SPSS to display the results of a
single simulation run graphically (such as histograms of response times), as well as the

results of several simulation runs (such as variations in response time as the offered load is
increased upon each new run).

Some features of ES/PAWS particularly useful for communications modeling are:

" access to the C language (data structures, expressions, functions, etc.)

* macro pre-processor
" submodel parameters
" finite-state machines

" enhanced version of GPSM, including:

" structured input facility (SI1)
* graph library facility
" scrolling GPSM graphs
" improved on-line help

" critique of GPSM graphs

-19-

The proposed specific C/PAWS enhancements include:

1) Forms and menus for the model user interface

2) User-defined icons for specialized components

3) Convenient specification of statistics collection, including statistics involving

subrmodels

4) Processing of simulation output for graphical display

5) A TIMEOUT node type for modeling communications protocol features

6) An Interrupt Resume node type for making failure modeling easier. This fits
into an overall failure modeling methodology

7) Libraries of C functions for analytic bottleneck analysis and routing algorithm
calculations

8) Libraries of re-usable submodels encapsulating common communications
subsystems

9) Specification of integrity constraints and reasonableness checks for nodes,
transaction states, submodels and simulation results

10) More flexible FORK and JOIN constructs

11) Explicit control of the generation of transactions at SOURCE nodes, allowing a
user to control a simulation run more closely

12) Support for hierarchical simulation

- 20 -

7.0 Conclusions

This project has convinced us that it is indeed feasible and practical to satisfy Army
communications modeling requirements by enhancing ES/PAWS according to sections 6.0
and Appendix B. We believe that such an enhancement project will produce a commercial
product that will dramatically improve the design and analysis of military communications
networks as well as non-military networks. Some of the enhancements are already
underway as part of the ES/PAWS project. The other enhancements await Phase II of this
project.

-21 -

8.0 References

AND 84
G. E. Anderson "The Coordinated Use of Five Performance Evaluation
Methodologies", Communications of the ACM vol. 27, no. 2, 1984.

BRO 88
J. C. Browne, P. lain, D. M. Neuse and M. Esslinger, "ES/PAWS - A System
Level Design Aid", submitted for publication in Proceedings of the Design
Automation Conference, June,1988.

CON 86
Customer confidential document. The model involves a Sperry 1100/44 computer
system with multiple command, arithmetic and peripheral processors used for real-
time computations. Permission is being sought to disclose this information.

DOR 84
Vladimir Dorfman, "SNA Communication Line Performance Analysis", Fujitsu
Systems of America, Technical Report 92-00024 July, 1984 (proprietary).

FER 84
V. Fernandes, J. C. Browne, D. Neuse, and R. Velpuri, "Some Performance
Models of Distributed Systems", Proceedings of the CMG XV International
Conference, Dec., 1984.

HAM 86
J. L. Hammond and P. J. P. O'Reilly, Performance Analysis of Local Computer
Networks, Addison-Wesley, 1986.

IRA 86
"PAWS Performance Models of a Computer Network Hub," Information Research
Associates, Internal Document, 1986.

IRA 87a
Information Research Associates, Performance Analyst's Workbench System
(PAWS) User's Manual, 1987.

IRA 87b
Information Research Associates, Graphical Programming of Simulation Models
(GPSM) User's Manual, 1987.

IRA 88
Information Reserach Associates, "Requirements Specifications for C/PAWS",
Task 1 report of U. S. Army CECOM Phase 1 SBIR project, submitted to CECOM
on January 6, 1988.

JAF 82
M. Jaffe and F. H. Moss, "A Responsive Distributed Routing Algorithm for
Computer Networks", IEEE Trans. On Comm., Vol. COM-30 no. 7, pp. 1758-
1762, July 1982.

- 22 -

JAI 87
Prem Jain, "Architecture Design of a VLSI Chip Using PAWS/GPSM",]~hnic1
R Information Research Associates, July 1987.

LAW 82
A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,
1982

NAV 87
United States Navy Contract No. N60021-86-C-0145, High Level Simulation of
Electronic Systems, 1987.

PAL 85
Annette Palmer, J. C. Browne, J. Silverman, A. Tripathi, and R. Velpuri, "A
Performance Model of a Fault-Tolerant Distributed System for Evaluating
Reliability Mechanisms", Proceedings of the CMG XVI International Coference,
1985.

SCH 87
Mischa Schwartz, Telecommunication Networks: Protocols, Modeling and
Analysis, Addison-Wesley, May 1987.

TAJ 77
W. D. Tajibnapis, "A Correctness Proof of a Topology Information Maintenance
Protocol for Distributed Computer Networks", Comm. ACM, vol. 20, pp. 477-
485, July 1977.

TAN 81
Andrew Tanenbaum, Computer Networks, Prentice-Hall, 1981.

UPC 84
E. Upchurch, "Modeling Packet Switched Interprocessor Communications",
Proceedings of the 15th Annual Modeling and Simulation Conference University
of Pittsburgh, 1984.

VEL 86
Rajkumar Velpuri, "Performance Study of Zeus Distributed System with Different
Communication Networks", M. S. Thesis, The University of Texas at Austin,
May, 1986.

- 23 -

Appendix A

Modeling and Experimental Evaluation Report

Contents

1.0 Introduction ... Al

2.0 Sim ulation Models .. A3

3.0 Data Unk Control Protocol Model ... A4

3.1 The Protocol A4
3.2 M odeling Approach ... A4
3.3 Protocol Model .. A5
3.4 Flow Control .. A7
3.5 Tim eout ... A9
3.6 Sim ulation Results ... Al1
3.7 Sum m ary .. A13

4.0 Switching Network M odel ... A14

4.1 Network M odel .. A 14
4.2 Routing Algorithm s ... A17
4.3 Static Directory Routing ... A 19

4.3.1 Shortest Path Trees .. A19
4.3.2 Routing m odel .. A21
4.3.3 Simulation Experiments A24
4.3.4 Variations on Shortest Path Routing A26

4.3.5 Discussion ... A26

4.4 Distributed Adaptive Routing .. A27

4.4.1 Hot Potato Routing Model .. A28
4.4.2 Simulation Results ... A31
4.4.3 Discussion ... A33

4.5 Flooding .. A34

4.5.1 Routing model .. A34
4.5.2 Discarding Duplicates ... A38
4.5.3 Network Overflow ... A40
4.5.4 Sim ulation Results ... A41
4.5.5 Discussion ... A41

Contents (Cont'd)

4.6 Shortest Path Routing W ith Failures ... A42

4.6.1 Failure M odel .. A42
4.6.2 Sim ulation Experim ents ... A44
4.6.3 Adaptive Shortest Path Routing .. A46
4.6.4 Discussion ... A50

5.0 Com m unications Sw itch M odel ... A51

5.1 Sw itch M odel ... A53
5.2 Sim ulation Experim ents .. A55
5.3 Discussion .. A57

6.0 Conclusions ... A58

References .. A59

List of Figures

Fig. 1A Data Link Control Protocol Model: Top-Level Graph
Fig. 1 B Data Link Control Protocol: Flow Control Modeling
Fig. 1C Data Link Control Protocol: Timeout Modeling
Fig. 1 D Response Time Statistics for Data Link Control Protocol
Fig. 2A Switched Network Model: Top-Level Graph
Fig. 2B Example Network
Fig. 3A Shortest Path Tree
Fig. 3B Static Shortest Path Routing
Fig. 3C Static Shortest Routing Data Structures
Fig. 3D Response Time Statistics for Shortest Path Routing
Fig. 4A Hot Potato Routing: Switch Model
Fig. 4B Significant Data Structures for Hot Potato Routing
Fig. 4C Response Time Statistics for Hot Potato Routing Algorithm
Fig. 5A Flooding: Modified Network Model
Fig. 5B Flooding: Switch Model
Fig. 6A Failure Modeling for Shortest Path Routing Switch Model
Fig. 6B Response Time Statistics for Shortest Path Routing with Failure
Fig. 6C Switch Model for Adaptive Routing in the Presence of Failures
Fig. 7A Call Processing Scenario
Fig. 7B Communications Switch Model
Fig. 70 Connect Time Statistics for Queued Mode Circuit Switch

CECOM COMMUNICATIONS MODELING PROJECT PHASE I
MODELING AND EXPERIMENTAL EVALUATION REPORT

1.0 Introduction

The objective of the modeling and experimental evaluation task of this Phase I project is to
determine the feasibility of using IRA's PAWS and GPSM simulation tools [IRA 87a, IRA

87b] for modeling the performance of Army communication systems. The approach taken
is to construct PAWS/GPSM models for a variety of representative communication systems

used by the Army, and evaluate the limitations encountered in the simulation tools while
doing so. The experience gained from these experiments will then be used to define the
enhancements required to the simulation tools in order to model Army communications

system easily and efficiendy. These enhancements will be carried out in Phase II of this
project, with the resulting advanced simulation tool for modeling communications systems
called C/PAWS. The overall approach to developing C/PAWS is to adapt ES/PAWS, a
top-down design tool for electronic systems being developed for the Navy [NAV 87, BRO
88]. ES/PAWS will be adapted to modeling communication systems, using 1he knowledge
and experience gained during this Phase I project.

The emphasis of the modeling and experimental evaluation task of this project is to

determine the limitations of using the current versions of GPSM (2.3) and PAWS (3.0)
for modeling communications systems. It should be noted that the objective of the

experiments discussed in this report is not to construct production-quality simulation

models. The effort is focussed on discovering the enhancements required to PAWS and

GPSM, rather than on constructing sophisticated or efficient models.

Several simulation models have been constructed which reflect many issues in
communication systems performance modeling in general, and Army networks in

particular. The models study features common to several network layers (e.g., timeouts
and flow control) as well as several switching methods (e.g., routing for circuit, packet and
message-switched networks). An important aspect of the experience that IRA has gained in

this area is expertise in modeling the effect of failures on communications systems

performance. This work has previously been published [FER 84, VEL 86] and drawn

upon in this study due to its special relevance to the Army.

-A-1 -

The following sections describe each of the models and routing algorithms developed in

this study and the results of using these models to perform some simple simulation

experiments. This is followed by a brief discussion of the experience gained during the

experimentation. Extensive simulations were not carried out as it was felt that they would

not provide any new insights into the enhancements required for C/PAWS. A detailed

discussion of the limitations encountered in PAWS and the enhancements required will be

presented in the enhancement specification (Task 2) report of this project.

- A-2 -

2.0 Simulation Models

Simulation models for the following communications system components have been

constructed and evaluated for this study:

1) A data link control protocol

2) A circuit-switched communications network with the following routing

schemes:

a) Static Shortest Path Routing

b) A Distributed Adaptive Algorithm

c) Flooding
d) Static Shortest Path Routing in presence of failures

3) A communications switching element

As explained later in this report, although these models were constructed with certain types

of communication networks in mind, they address issues common to a wide range of

network modeling situations.

In addition to the models listed above, PAWS and GPSM have been used by IRA and IRA

clients in order to model the following:

1) The CSMA/CD protocol (Ethernet) [FER 84]
2) A token-passing ring [VEL 86]

3) A hardware reconfigurable look ahead network [VEL 86]

4) An SNA communication line [DOR 84]

5) A VLSI Communication chip [JAI 87]

6) Packet-switched inter-processor communication [UPC 84]

7) A VAX 11/780 cluster at the hub of a star network [IRA 86]

8) The impact of communication services on a real-time point-of-sale system

(AND 84]
9) A failsafe distributed routing protocol in presence of failures [VEL 86]
10) Failures in a Sperry 1100/44 - based system used for real-time calculations

Since these models have been discussed elsewhere they will not be discussed in this report.

A-3 -

3.0 Data Link Control Protocol Model

The one-bit sliding window data link protocol was an interesting example that yielded some

useful insights. These protocols are important in the analysis of communications systems

performance.

Some limitations were found in the ease with which PAWS can be used to model these

types of data link control protocols. However, it was noted that these limitations can be

overcome in a fairly straight-forward manner, and in fact the ES/PAWS simulation tool

under development will overcome most of these.

The protocol is briefly described below, followed by the modeling approach, the model and

some simple simulation results.

3.1 The Protocol

The protocol was chosen from the data link control chapter in Tanenbaum's text

("Computer Networks"), where it is referred to as "protocol 4" [TAN 81]. This protocol

uses a one-bit sliding window to provide full-duplex data transmission in the presence of

message corruption, loss, and duplication. Piggybacked positive ACKs are used for

message acknowledgement. The protocol assumes two stations communicating over a

point-to-point lir. Each station consists of a host (message source) and an IMP (network

interface). Each IMP maintains global variables which contain the windowing information.

Every message sent over the link contains a (1-bit) sequence number and the next sequetice

number expected from the other side. The latter is essentially an ACK.

3.2 Modeling Approach

The protocol was modeled in a top-down hierarchical fashion Lo try to match a

communications engineer's view of the problem rather than a performance analyst's

approach. Thus the top-level GPSM graph is highly intuitive, consisting entirely of source

nodes and submodel calls. Although this is a somewhat inefficient way of modeling the

protocol, it is modular and preserves information hiding.

A limitation of PAWS is its restrictive submodeling facility. The submodeling facility

incorporated in ES/PAWS will have a clean and convenient interface, similar to the

- A-4 -

semantics of procedure calls in conventional programming languages. It was discovered

that it is not convenient to define a re-usable library of submodels in PAWS 3.0. For this

reason a collection of models rather than submodels will be delivered to CECOM, as we
believe they will be more useful to CECOM at the present time.

The protocol allows JMPs to accept messages from the hosts only when they have
processed an ACK for a previous message. In Tanenbaum's description the flow control

required to prevent a host from swamping an IMP with messages is assumed to take place
in the host, and is not described. For the purposes of modeling, host-IMP flow control
was explicitly specified.

3.3 Protocol Model

The protocol model is described with the aid of the top-level GPSM graph (Fig. IA). The
model is symmetrical in that the functionality of the two communicating entities, A and B,
is identical; they differ only in the data structures they operate upon. (In ES/PAWS it will

be easier to express this similarity using submodel calls, in a fashion similar to calling

library procedures in a conventional programming language). In the following description
the operation of side A is described -- side B is similar.

-A-5 -

0.0kM

ifl ial

E"

-C, 0

0

- C

o 0M

A-64

Node sourceA generates messages from the network host A. These are processed in the
host (at callhosA) before being forwarded to the network interface (callimpA). The

submodel called from callhostA essentially models the host-LMIP flow control, and its
functionality is described in sec. 3.4.

The IMP handles both outgoing messages from the host as well as incoming messages

from the media. For outgoing messages it performs the windowing function by setting the
1-bit sequence and acknowledgement numbers. It also performs the timeout and

retransmission function, described in sec. 3.5. For incoming messages, the IMP checks to
see if they carry the correct sequence number, ACK, or both. If an ACK is received, it

prevents a timeout as described in sec. 3.5. The received message is then forwarded to

hostA to open the host-IMP flow control.

The key modeling issues are flow control and timeouts, which are discussed below.

3.4 Flow Control

A natural way to implement flow control is via PAWS tokens. Modeling host-IMP flow
control required four ALLOCATE and RELEASE nodes, arranged as in Fig. lB. Note that

this arrangern-t does not require transactions to carry the token through the entire model.
Thus the token management function can be encapsulated within this one submodel.

A-7 -

40

.410

0
04P-

.0 -

2.4

0

00

-- W

'Io

IzN

- 3v4

Im

A--8 0

Node Aflowcntl initially holds one token. An incoming message obtains the token and,

upon reaching node Aflow, releases it to node Afcnl thus preventing any new messages

from the host onto the link. An ACK from the other side uses the token at Afcntl and

releases it at node Af to Aflowcntl thus allowing any queued messages there onto the link.

The number of tokens placed initially at node Aflowcnl is equal to the protocol window

size.

Flow control in communication systems is intended to prevent a fast sender of messages

from overflowing the capacity of a slow receiver. Two schemes are common. In the f'irst,

the sender produces messages up to a fixed predetermined number and waits for

permission from the receiver to send any more. This is the scheme used in this example.

In the second, the sender continues to send messages until instructed by the receiver (via a

c XOFF signal, or CTRL-S character) to stop doing so; the sender resumes

upon receiving an explicit signal from the receiver.

In C/PAWS and ES/PAWS it is possible to model both these schemes using two nodes.

The first can be modeled using an ALLOCATE and CREATE node pair, while the second

can be modeled using a SERVICE node and a SET node. Both these mechanisms are quite

general and convenient, so it is not felt necessary to introduce a new node type for

modeling flow control.

3.5 Timeout

A natural way to hpecify timeout processing is via delay nodes and PAWS interruptc In

Fig. 1C an example of how this can be done is shown (in the actual protocol model this

function is contained in two separate graphs - the non-essential details are not shown in

Fig. 1C).

-A-9 -

4-J-

* 4a~ l-.

EE

0

00

4 0

Iii

A-0 04

A message arriving at node splitsend is copied so as to create two identical siblings. At

node sibrou one sibling is routed out to the link, while another is routed to a timer to await

an ACK. At node saveid the ID of the waiting transaction is recorded. If the transmitted

sibling correctly reaches the other side an ACK is sent, which reaches node in= Here

the information saved by node saveid is used to determine which transaction is awaiting the

ACK. At node stotimer the ACK interrupts the timer and routes that transaction to a sink.

If an ACK is not received within the specified Timeout, the waiting transaction leaves node

tir and is again split into two siblings at node sIitsend, in order to cause a

retransmission. This will continue until an ACK is received.

If timeouts are to be specified frequently, a timeout node type, whose semantics have been

carefully defined to include retransmissions of multiple outstanding messages, may be

defined.

3.6 Simulation Results

Each of the two hosts in the model generates messages with an exponential inter-arrival

time distribution of 20 time units. The cable propagation delay is a constant 5 units. There

is 1.5 time unit constant processing delay per message, composed of two delays of 0.5

units each at the source destination IMP's (nodes crunch and hostxmit) and 0.5 units for

processing transmission of each message copy (node xmitd1ay). There is an 85%

probability that a message traverses the cable without error. Message corruption and loss

account for the rest. Each IMP has a Timeout variable which determines how long it waits

for an ACK before retransmitting the last message. The Timeout variable is the same for

both nodes. The model is simulated for 5000 time units. Although this is a fairly short

simulation run (only about 250 messages are generated per side) it is sufficient to get an

estimate of protocol behavior.

The model was run for 5000 time units with a value of 25 units for the Timeout variable.

The response time from node Ahostin to statistics collection node findsnt (Fig. 1C) is

shown as a histogram in Fig. ID. This appears reasonable given the deterministic

processing delays.

-A-1 -

E 2 IRA PA WS - V3. O. 11 01-08-88 RESPONSE TIME STA iSTEI

EPONSES ER AOSTMSG3 /AHOSTIN (1) TO WAHTSG /EINDSENT (1)

CATEGORY: /NSGA
RESPONSE-T IME
INTU'JAL WIBMER IN IN HISTOGRA

INTERYAL I9EiVAL 0 10 20 30 40 50 60 70 80 90 100

0.000 <= X < 5.000 0.000 0.00 1< I

5.000 <: X 10.000 0.000 0.00 1< I

10.000 <: x < i5.000 156.000 70.91 I

15.000 <= X < 20.000 2.000 0.91 I(I

20.000 <= X IEIN ITY* .00 n8.18 T< I

TUTAL: 220.000

SUMMARY
'aN: 21.316 2ND MOMENT: 683.670

VAR: 229.302 STNDI R E: 15.143

Fig. ID Response Time Statistics for Data Link Control Protocol

- A-12 -

3.7 Summary

It seems clear that the key aspects of data link protocols can be modeled in PAWS. This
modeling will become even easier and more convenient in ES/PAWS, which will retain the
declarative and visual programming aspects of PAWS and GPSM, and in addition provide
the convenience and expressiveness of the C programming language.

An important aspect of this model is that it addresses issues such as timeouts, flow control,
and message loss, which occur not only in the data link communications layer but also
other layers of the OSI model

The model can be extended quite easily to deal with protocols with larger window sizes. If
specialized node types are developed to represent timeouts and flow control, this type of

modeling will become very easy in C/PAWS.

-A-13-

4.0 Switching Network Model

This section describes a model of a switched commurications network. The following

sections describe the modeling of various routing algorithms for this network.

The primary objective of the model is to investigate the effect of routing algorithms on the

performance of circuit-switched networks. However, it should be noted that the

performance issues involved in non-hierarchical routing in circuit-switched networks are

very similar to those involved in routing for packet-switched networks [SCH 87]. Thus by

restricting attention to non-hierarchical routing algorithms, the model can be used for both

circuit-switched and packet-switched networks, possibly with a small amount of

modification.

Since the emphasis is on the feasibility of modeling routing, other network issues, e.g.

congestion control, have been ignored. It seems clear that if routing can be modeled using

PAWS and GPSM, other network layer issues can also be handled. In addition, a data link

protocol model (sec. 3) indicates that features common to several communications layers,

e.g. timeouts and flow control, can be modeled using PAWS and GPSM.

An important aspect of the network example is that it models the effect of failures on

performance. The example also incorporates the effect of repairing failed components.

4.1 Network Model

The network model will be explained with the aid of the top-level GPSM graph (Fig. 2A).
Note that for the purpose of performance analysis a communications network can be

conceptualized basically as messages circulating between network switching nodes and

communications links. In the model, these are represented by the submodels cswitch and

Qin respectively. This performance modeling diagram does not represent the network

topology. It is an abstraction of a general network, where messages continuously travel

from switches to links until they reach the destination host.

- A-14 -

04

'PP

U1j

t.#

U2

-- 5

The node rsource models the generation of network messages for all hosts in the network.

Messages are generated at a different rate for each host, as determined by a source rates

data vector which is initialized in the PAWS "run" section. The messages generated at

msource only contain the ID of the source host but not that of the destination host. At node

trffic the network connectivity, link delay and traffic probability matrices are read in from

a data file (this is only done once per simulation run). Messages are assigned destination

host ID's based upon the traffic matrix. Thus a message reaching a network switch

(modeled by PAWS node cswitch) carries its source and destination host Is. At cswitch

the network routing function is carried out. Messages leaving cswitch carry the ID of the

next switch to which they are being forwarded and the link over which they will be sent.

The amount of delay that the message will experience while traversing this link is also

calculated here, although the actual delay is modeled at node clink.

Messages that reach their destination will leave the model via the sink node d.natn

Messages forwarded to other switches enter node clink where they will experience delay,

and possibly, loss and corruption, before returning to cswitch. Lost and corrupted

messages leave the model via sink node loses.

The nodes failres fail2gi and failsin are used for modeling failure. Failure

processing will follow the approach taken in previous IRA studies of failure modeling for

distributed systems [FER 84, VEL 86]. In sections 4.3 to 4.5 several routing algorithms

will be described without reference to failures; the failure transactions essentially enter and

leave the network without having any effect, and can be ignored. In sec. 4.6 a model will

be described that considers the effect of failures; failure processing is discussed in detail

there.

- A-16 -

4.2 Routing Algorithms

The network routing function is encapsulated in the PAWS submodel cswitch Three
different classes of routing algorithms are described below. These represent very different
types of routing criteria--ranging from minimizing response time to achieving maximum
reliability. We have chosen to implement an instance of each type of algorithm in order to
determine the feasibility of modeling that class. The algorithms modeled are:

1) Static Shortest Path Routing
2) A Distributed Adaptive Algorithm

3) Flooding
4) Static Shortest Path Routing with Failures

The routing algorithms were all run on the same example network [SCH 87]. The network
topology and various parameter vectors are shown in Fig. 2B. In the traffic probability
matrix, entry T (i, j) represents the probability that a message generated at host i has hostj
as its destination. The source rate vector was decided upon somewhat arbitrarily. It does
have the effect that with the traffic matrix shown in Fig. 2B, over one fifth of the total
network traffic goes from (source) host 1 to (destination) host 2.

- A-17 -

Example Network

2
2 3 16

Circles represent nodes in the network.

Lines respresent bidirectional links, with ,ink delays.

Source rate vector (arbitrary choice of rates):

Node Inter-arrival time for message

1 10
2 20
3 30
4 40
5 50
6 60

Traffic Probability Matrix, T to node

1 2 3 4 5 6

1 0.0 0.5 0.2 0.1 0.0 0.2

from 2 0.1 0.0 0.2 0.1 0.4 0.2

node 3 0.2 0.1 0.0 0.1 0.2 0.4

4 0.3 0.1 0.2 0.0 0.3 0.1

5 0.3 0.1 0.2 0.3 0.0 0.1

6 0.1 0.2 0.2 0.4 0.1 0.0

Fig. 2B

- A-18 -

4.3 Static Directory Routing

This is a simple algorithm and one of the most widely used [TAN 81]. Each network

switch maintains a table with one row for each possible destination host. A row gives the
outgoing line (or next switch) that messages for that destination should be forwarded on.
There may be several possible outgoing lines, ranked in order of preference. Thus routing
depends upon the destination host ID, and outgoing lines can be chosen by some metric so
as to optimize performance. Typical metrics include link delay and hop count.

The main advantage of static directory routing is that it is simple to understand and
implement. Typically network managers calculate the routing tables and load them into the

switches manually. Static routing gives good performance if the network topology and
traffic do not change much. The main disadvantage is that the algorithm does not adapt to
changes in traffic.

4.3.1 Shortest Path Trees

In our implementation of static routing each switch chooses the outgoing line that has
minimum delay for each destination host, ie., link delay is used as the path m~etric. Notice
that the optimality principle applies : if the shortest path from switch I to switch K is via
switch J then the shortest path from I to K also falls along the same route. Thus the set of

optimal routes from a source to all destinations forms a tree rooted at the source. We will
call this a shortest path tree. Since failures are not being modeled in this particular
simulation each switch chooses only one outgoing line per destination.

The shortest path trees, with link delay as metric, arc shown in Fig. 3A for nodes 1 and 2

of our example network.

-A-19 -

Shortest Path Trees

5

Network:

Shortest Paths from Node 1 to other nodes

Shortest Path Tree, Node 2

Fig. 3A

-A-20 -

4.3.2 Routing model

The routing function is carried out in the submodel switch (see Fig. 3B). Data messages

enter the token release node finkrel where they release access to the communication link
over which they arrived. Since messages generated at the host (msour) have not yet
entered the network, they do not have any links to release, and proceed to node r
which invokes a FORTRAN program to perform the routing calculation.

- A-21 -

jig.

I 0

000

EU

rib-

.f4

ca

IT

-A-22

The routing program expects as input the switch to which the message has arrived, and the
ultimate destination of the message. Depending on the destination the program searches a

routing matrix to determine the next switch to which the message should be forwarded

based upon the shortest path tree for this switch. When the message leaves croute it carries

the IDs of the current switch and the next switch in it's local variables, as well as the

aiount of dciay it wili experience in going to the next switch. (Only me amount of the

delay is calculated here--the actual delay occurs in the submodel link). The routing
program also determines whether the message has reached its ultimate destination, and if

so, sets a local flag in the message.

The data message then experiences a small switching delay at swdrd. This delay has an

exponential distribution, to roughly model the contention for processing that occurs when
several messages are present at the switch. Since the delay is usually much smaller than the

link delays, it is not modeled in detail. If the message has reached its destination its leaves

the switch via arc t Otherwise, at node golmk the message is assigned the actual
communication link number over which it must travel in order to reach the next switch.

Since only one message may travel on any link at any time, at node linka the message
contends with other messages which need the same link. The link" icon represents an

array of N2 PAWS ALLOCATE nodes, where N is the number of nerwork'hosts. There is

one token per ALLOCATE node. A message bound for link i receives a token at linkgs(i)
and releases it, after it has travelled through clink, at node lnkr1, allowing the next
message queued at node flnkg (i) access to link i.

In order to aid understanding of the PAWS code, the variables used in this model are

documented in Fig. 3C.

-A-23 -

PAWS local integers

LI [1] : the message source node ID
LI [2] : the message destination ID

LI [3] : current switch ID
Ll [4] : next switch ID
LI [5] : delay to experience in going to next switch
LI [6] : the communication link number

= (LI [3] - 1) * (number of nodes) + U [4]

PAWS local booleans

LB [1] : message is to be routed to a link
LB [2] : message has reached destination

LB [31 : message leaves model as a loss

Fig. 3C. Static Shortest Path Routing Data Structures

4.3.3 Simulation Experiments

The shortest path rouring algorithm was simulated for 1000 time units with the source rates

shown in Fig. 2B. The switching delay was assumed to be 0.1 time units. The response
time for all messages generated by all hosts in the network was measured as the time to
travel from rsource to = Fig. 3D shows the average network response time histogram

calculated by PAWS.

-A-24 -

?AGE 25 tRA PAWS - V3. 0. 11 (01-08-8) A RESPONSE TI E S.-A',:A ST CS

RESPONSES FION /SOURCE (I) to /DSTAT (1)
CATEGORY: /DATA

RESPONSE-!INE
INTM'EAL MNJNBER 2N z IN HISTOGRAM

WfMERVAL INTERVAL A0 10 0 40 So 60 70 30 O0 100

0.000 <2 X < 2.000 123.000 49.80 IA ,,,,,,*. .. I
2.000 <z X < 4.0m0 66.000 26.29 IA***,,******(I
4.000 (2 X < 6.000 35.000 13.94 IA * I
6.000 X < 8.000 12.000 4.78 I**< I
8.000 <= X(X kI < INMIT 13.000 5.18 I*< I

..........

TOTAL: 231.000

SUM~ARY
HMA: 2.821 2ND MNT: 14.080
VAR: 6.120 SINDID BEY~: 2.474

Fig. 3D Response Time Statistics for Shortest Path Routing

-A-25 -

4.3.4 Variations on Shortest Path Routing

The routing algorithm discussed above uses only one route per source-destinat.,.i pair,
which has been pre-computed and fed s input to the FORTRAN program (statrout.for).

In general there may t)e more than one route with the same minimum cost between source-

destination pairs. In addition it may be desirable in high traffic situations to distribute some

traffic to links that are lightly loaded, or unloaded, in order to improve performance (e.g. in

the example networl, the links between nodes 1 and 3, 3 and 4, and 2 and 6 do not he on

any shortest path and hence are unused). Finally, multiple source-d&stination paths are

needed in case link failures can occur.

One approach to distributing the traffic over several routes for each source-destination pair

is to choose one of severa. routes on the basis of a probability assignment (which can be

considered a "load factor") for each route. Thus routes can be ranked in order of

preference. This approach has in fact been implemented in the FORTRAN program written

for this project. Thus the routing matrix for each switch can contain probabilities assigned

to various switches that an incoming message can be forwarded to in order to proceed to

the destination. This approach was not pursued further as it was clearly within the
capabilities of PAWS and no new insights were expected.

A more sophisticated version of shortest path routing would combine it with some form of

adaptive routing, e.g. by considering not only static quantities such as link delay and hop

counts, but information that is dynamically available e.g., queue lengths at outgoing lines.

This could result in a very effective algorithm that would continue the advantages of

shortest path routing with an algorithm such as Hot Potato, discussed in sec. 4.4.

4.3.5 Discussion

One issue associated with shortest path routing is the computation of the shortest paths. In
the current model the shortest paths are computed by the model user by inspection. For a
large network it would be useful to have a (separate) utility that would take a network

connectivity and link delay matrix input and apply, say, Dijkstra's algorithm [SCH 87] to

produce the shortest paths. Such a program could conceivably produce multiple paths,

paths selected by several criteria (e.g., minimum delay, minimum hop, etc.), or by a

combination of criteria.

- A-26 -

Another issue that arises is the specification of source rates. This is a vector of length equal

to the number of nodes in the network. Unlike the traffic and connectivity matrices

however, it cannot be read in from a data input file, but must be specified in the

PAWS/GPSM model itself. This is somewhat tedious, and if done in GPSM, requires that

the model be retranslated to PAWS for each simulation run in which only the source rates

vector is changed.

These issues will be discussed in the enhancement specification.

4.4 Distributed Adaptive Routing

The problem with static directory routing is that it does not adapt to changes in network

traffic. One way to overcome this is to periodically recalculate the routing tables based on

current estimates of traffic. A centralized approach to adaptive routing usually involves

each switch periodically sending its status information (queue lengths, links known to be

down, etc.) to a central routing control center, which recalculates the routing tables and

redistributes them to the switches. This approach has several drawbacks: the cost and

rcomplexity of re-distributing routing tables, the vulnerability of the control center, and the

traffic congestion at the center. It is preferable to adapt to traffic changes using distributed

control.

A class of algorithms known as isolated adaptive algorithms [TAN 81] attempts to let

switches make routing decisions based only on information that they themselves have

gleaned. They do not exchange routing information with other switches, so they are often

simple and cheap to implement; however, they are less likely to produce optimal routes than

true distributed algorithms. Examples of the latter include the distributed algorithms of

Jaffe and Moss [JAF 82] and the work of Tajibnapis [TAJ 77].

-A-27 -

4.4.1 Hot Potato Routing Model

A simple example of an adaptive routing algorithm with decentralized control is called hot

potato [TAN 81]. The idea is simple -- when a message arrives, the switch sends it on the

outgoing line with the shortest queue, without regard to the message destination. Clearly

this algorithm will not perform nearly as well as static shortest path routing. It can be

combined with static routing by making the path metric a function of both link delay and

queue length. We have implemented the simple hot potato algorithm for our network

example, using queue length information that was conveniently available in the PAWS

model.

The switch model for hot potato routing (Fig. 4A) is essentially identical to that for shortest

path routing. The only difference is that the PAWS user node croute has been replaced by

the COMPUTE node calcute, which performs the necessary routing calculations using

the PAWS computation syntax and not by invoking a FORTRAN program.

-A-28-

o

Z L

"4-'

1~41

"1!, 0

0

LL 04

41

-A-29-

The routing calculation uses several PAWS local and global variables in addition to the
ones used for shortest path routing. These are shown in Fig. 4B.

PAWS local integers

LI [1] message source
LI [2] message destination

LI [3] current network switch

LI [4] next network switch
LI [5] link delay to be experienced

LI [6] link number to be travelled

= (LI [3] -1) *6 + L [4]

PAWS local booleans

LB r1] route message to link
LB [2] message has reached destination

LB [3] message loss

PAWS global integers

minql minimum queue length
minq link with shortest queue
mini switch corresponding to minq

PAWS global booleans

GB [1] no link between some two switches

GB [2] minimum queue length found

Fig. 4B Significant Data Structures for Hot Potato Routing

When a message arrives at caicroute, the algorithm first checks to see if the destination has

been reached. If so, the message is treated as it would be for the shortest path algorithm,
and eventually leaves the model via arc tohos If not, the algorithm computes the link

-A-30-

number for each possible outgoing link from this node. If such a link exists in the example

network, the queue length at 1inkQ for that link is read. This is easy to do because PAWS

COMPUTE nodes allow transactions to access queue lengths at any SERVICE,
ALLOCATE or GETMEM node within the same submodel. The algorithm finds the

outgoing link with the minimum queue length, and assigns the corresponding "next switch"

to the message.

4.4.2 Simulation Results

The hot potato routing algorithm was simulated for 1000 time units with a switch delay of
0. 1 units. Average response time statistics for all messages for all source destination pairs

were obtained by specifying rsource and dstat as the PAWS response time from- and to-

nodes. The response time histogram calculated by PAWS is shown in Fig. 4C.

-A-31 -

F ?AE 2 6 IRA PAW~S - V 3 .0. 11 (01 -08-8) R ES PON1SES TIME STATI1ST C-S

REPONSES ERon /MSCURCE (1) TO /DSTAT (1)
CATEGORY: /OATA

RESPONSE-TINE
INTERYAL NUMBE IN I IN HISTOGRAM

INTEIJAL INTER9AL 0 10 '20 30 40 50 0 70 80 90 100
0.000 <2 X 10.000 77.000 37.20 I*** k* <
10.M0 <: x 20.000 41.000 19.81 Ikddt** W
20.000 (a X < 30.000 22.000 10.63 Ikk***<
30.000 <2: X 40.000 11.000 5.31 AX<
40. W -z < *IHDfII* 56.000 27.05 W A *(

TOTAL: 07000

SUMARY
M~EAN4: 52.251 20 ?MlEN: 1335.625
VAR: 1060.468 S IID : 102.983

Fig. 4C Response Time Statistics for Hot Potato

Routing Algorithm

- A-32 -

Clearly, static shortest path routing is far superior to hot potato routing as the hot potato
algorithm does not consider the ultimate destination of the message.

4.4.3 Discussion

The hot potato routing algorithm is an example of how PAWS facilities can be used
conveniently for constructing communications models. In this case the queue length
information available from PAWS made modeling of this algorithm very easy. The model
did not require the user to write and debug a FORTRAN program. Instead the high-level
declarative features of the PAWS language were used. In the ES/PAWS tool under
development, not only queue lengths but most model parameters will be available to the

model developer.

This illustrates two approaches to performing calculations within PAWS models. The first
is the approach taken in shortest path routing, which is to do all but the most rudimentary

calculations using FORTRAN programs invoked from PAWS USER nodes. The
advantages of this approach are:

1) the program can be tested in isolation from the simulation model
2) data can be read from and written to FORTRAN data files without having to

retranslate the model. This provides a degree of isolation between algorithms
and data structures, as data need not be embedded in the model.

3) the user can use a favorite programming language other than FORTRAN, e.g.,
Pascal or C.

4) complex algorithms can be developed using powerful programming languages

5) the resulting model may be more efficient

The second approach is to use as few USER nodes as possible, and to perform all
calculations within PAWS COMPUTE nodes. This requires that model inputs be kept in
PAWS variables and initialized in the "RUN" section. In fact, the hot potato routing
model developed here does just that. The link delays are kept in an array of global reals of
size N2 , where N is the number of nodes in the network. This information is used in the
routing algorithm to determine the outgoing links from a switch, and their link delay. It
would be possible to take this one step further and store the traffic matrix in this way and

-A-33 -

replace the traffl USER node in the main model with a COMPUTE node. The advantages

of doing this are:

1) the model is written entirely in the PAWS language; the entire model can be

viewed using GPSM and so is easier to understand
2) the user need not have any knowledge of FORTRAN programming--the high-

level PAWS constructs can be used exclusively

3) Model parameters, e.g., queue lengths, are available directly

These issues are being addressed by the ESIPAWS software under development. They

will be discussed in the enhancement specification.

4.5 Flooding

A simple algorithm that is attractive due to its high reliability is flooding. In one version of

flooding, which we shall call naivefljng, every incoming message is sent out on every

outgoing line, including the one it arrived on. The message sent back to the switch from
which it just arrived is treated as an acknowledgement at that switch. The version of

flooding implemented in this project is standard flooding in which incoming messages are

set n-u: on every outgoing link except the one they arrived on. A variation of this is called

selective flooding [TAN 8 1] in which incoming messages are sent out only on those lines
going approximately in the right direction. In all three versions of flooding, various

measures can be taken to damp the large numbers of duplicate packets that will be
produced, e.g. by putting hop counts in the message, so that once a message has traveled a

distance greater than the network diameter it is discarded. Flooding always chooses the

shortest path, since it tries every path.

4.5.1 Routing model

In our implementation of flooding every message generated in the model is assigned a

unique sequence number. This is so that copies of messages that have already been seen

by a switch can be discarded. The sequence number is assigned in the PAWS node
maeone in the main model, which has been changed from a simple CHANGE node to a

COMPUTE node (see Fig. 5A).

-A-34 -

oo

00

-z

LA.

0

Lai 0ILI

=S
o4o

A-35 -

Although the flooding algorithm is conceptually quite simple, the performance model is a
little tricky. The main problem is to ensure that the model discards exactly the right number

of duplicates. This is discussed in sec. 4.5.2 below.

For the moment assume that duplicate messages are correctly generated and discarded, and

that this calculation is carred out in the PAWS nodes calcrute and flod of the flooding
switch model (Fig. 5B). Tlhe node c determines whether an incoming message has
reached its destination, in which case it eventually leaves the model via arc rached or
whether the incoming message should be flooded out on the outgoing links, in which case

it proceeds to m.

-A-36 -

apl

to

I''D

.11A

-44

010

A-37

The first time the message reaches makecopy it creates zero copies (PAWS siblings), and

proceeds to node flood. Here the second part of the flooding algorithm - copy generation -
is carried Out. The original message arriving at fLood leaves with the link number of the
link on which a copy should be sent. (The link number is determined in a straightforward
way so that a copy is not sent on the link on which the message arrived, and no attempt is

made to send on non-existent links). The original message circulates between makecopy

and flod creating one new copy each time it reaches m. The copies leave the loop

and proceed for processing to node =, while the original leaves the model via arc
a when all the necessary copies have been created. Copies undergo some minor

"book-keeping" changes at node = before competing for the appropriate outgoing link at
Lnk,. The link allocation and release is handled exactly as for the shortest path routing

model.

4.5.2 Discarding Duplicates

The generation of copies is quite straightforward, but not the discarding of duplicates. One
attempt to do this is to keep an array of local flags in each message, one per switch. When
switch J receives a message it checks to see if flag J is set in the message. If so the,

message has already been seen by this switch, and is discarded. If not, the flag is set so
that any future duplicates will be recognized, and the message is forwarded for the creation

of copies. (When PAWS creates copies of transactions at a SPLIT node, the local flags of
the original transaction are replicated in the copies). Unfortunately, although this scheme

seems intuitively clear, it is not correct. To see this consider the network example. A
message generated at host 1 will be copied and sent to switches 2, 3, and 4. Say the

message routed via switch 2 reaches switch 3 before any of the others do. This message
will have flags 1 and 2 set. Now consider that the message routed via switch 4 arrives,

with flags I and 4 set. It will not be recognized as a duplicate.

The problem is that marking messages in this way only ensures that copies that each switch

has itself generated are recognized as duplicates when they circulate through the network
and arrive at the same switch again. It does not ensure that copies that have taken different

paths to the switch are recognized as duplicates.

One aim of discarding duplicates is to ensure that the destination host only actually receives
one copy of every message destined for it. An attempt to do this is to abandon our first
scheme and instead to generate unique sequence numbers for each message. In this second

-A-38 -

scheme each switch keeps in an array of global variables the last sequence number seen for

each destination. At first it may seem that one would need to keep a list of all the sequence

numbers seen by a given switch. However, in the absence of message failures, it would

seem sufficient to keep only the last one. The argument is to consider messages generated

by host I for host 6 in the example network. Say messages with sequence numbers x and

y are generated, in that order. In that case message y follows message x on every outgoing

link. If there are no failures, the messages will reach switches 2, 3, and 4 in this order,

and since switches do not re-order messages, will reach host 6 in the correct order. So it

appears to be sufficient for a host to keep the sequence number of the last message

received, and discard any message received with smaller or the same sequence numbers.

Notice that this scheme preserves end-to-end duplication control: no destination host will

receive duplicate messages, and in that sense the scheme seems correct. However the

scheme does not meet the stronger requirement of flooding, i.e., that no switch in the

network forwards a message that it has seen already. The reason is that at intermediate

switches in the network the message is not forwarded to the host, so duplicates will not be
recognized until they eventually reach the destii4tion switch. A lot of unnecessary traffic

will be generated and the network will eventually overflow. One might think that a way to
overcome this would be to combine schemes I and 2, so that intermediate smitches would

recognize duplicates. This third scheme will work in the sense that no message duplicates
will circulate in the network forever. However, intermediate switches would only

recognize duplicates that they had seen before, and not those that took different paths to

arrive there. Hence scheme 3 wastes the network capacity, so that at high loads the

network will overflow for loads which it should technically be able to sustain. In fact
when scheme 3 was implemented for the example network with the input rates shown in

Fig. 2B, the simulated network did overflow.

The following scheme is actually the scheme that was implemented for this project. Each

switch maintains a vector containing the last sequence number it received from each source

host. Messages seen from a source with smaller or equal sequence numbers are discarded.

Let us see why scheme 4 works.

'irst note that the argument given in scheme 2 for needing to keep only the last sequence
number, instead of a list, is only correct if one merely considers messages between a single

source-destination pair. Although messages from a single source arrive at a given

destination in order (by the argument given in scheme 2), it is entirely possible that

- A-39 -

messages generated later in time (and hence having a greater sequence number) at an

adjacent node will arrive earlier, so that messages from distant nodes would be discarded

incorrectly. Thus scheme 2 fails not only because intermediate switches do not recognize

duplicates, but because some messages may be discarded incorrectly. The correct way to

uniquely identify duplicates is by keeping the sequence number of the last message seen

from a given source host.

Now consider what happens if two copies of a message arrive at a switch by following

different paths. The one that reaches first will have its sequence number entered in the slot

for this source host, and will be flooded on outgoing links. The second message to arrive

will be recognized as a duplicate and will correctly be discarded.

4.5.3 Network Overflow

The network overflows when the traffic input to the network is greater than its processing

capacity. In our example the switching delays are assumed to be small, so the bottleneck is

the link delay. In standard flood routing with an incorrect implementation (scheme 3) the

example network was observed to overflow, and queue lengths at some of the links grew

without bound (at PAWS node linkgs .

It is useful to estimate whether network overflow will occur prior to running any simulation

experiments. For flood routing a simple bottleneck analysis is possible. Instead of

considering standard flooding, suppose naive flooding was used. Naive flooding will

clearly generate more network traffic than standard flooding, but is easier to analyze, and

provides a conservative estimate of the bottlenecks. Under naive flooding each message

generated by a source node will traverse every link twice. If M messages are generated per

time unit, each link will eventually be traversed by M messages in each direction. If the

link capacity of the slowest link is Crmn in each direction, network overflow will occur

unless

M < Cmin

In our example messages are generated with inter-arrival times of 10, 20 30, 40, 50 and 60

time units. This corresponds to an average aggregate arrival rate of

M = 0.245 messages/time unit

The slowest link has a delay of 5 units pe 'essage, i.e.,

-A-40 -

Cmin = 0.2 messages/time unit

Thus under naive flooding the network will overflow. The actual behavior under standard
flooding is hard to analyze, but it is likely that the network will not overflow since M is
relatively close to Cmin. This turns out to be the case.

4.5.4 Simulation Results

The flooding algorithm was simulated for 1000 time units. Under the current
implementation of the model it is not possible to obtain response time histograms. This is

because PAWS generates response time statistics for each original message. However, in

this model the original message is lost once it has generated all the copies it needs to at the
first switch. For this reason it was necessary to calculate the travel time for each message,
including its copies and calculate the net travel time from msource to the PAWS node

reach This was divided by the throughput count at node reached This yielded a mean

response time of 2.67 units.

4.5.5 Discussion

The flooding algorithm raises several interesting points. An obvious consideration is that

due to the way response time statistics are collected in PAWS it is not possible to obtain a

response time histogram for the model as it currently stands. A simple change to the model
to overcome this would be to insert a SPLIT and an ALLOCATE node between msource

and cswitch One sibling is created at the SPLIT which traverses the network, while the

original message waits at the ALLOCATE. The sibling carries the ID of the waiting

transaction; when it (or a copy) reaches the destination, it interrupts the waiting

transaction, which proceeds to a sink. The response time for the message traversal through
the network can be found as the response time of the waiting transaction. Since this idea

was clearly within the current capabilities of PAWS it was not implemented.

A mcre interesting issue is raised by the complexity of modeling flooding correctly, as

discussed in sec. 4.5.2. This points out that there needs to be a clear distinction in

C/PAWS between model developers, who would deal with the problems discussed in sec.
4.5.2, and model users, who would be more interested in varying the parameters and

-A-41 -

inputs to the model for design or performance studies. IRA is currently seriously studying

the distinction. Another interesting point is that it is desirable to assist the model developer

in gaining confidence that the model is correct. This aspect of performance modeling is

often neglected [LAW 82]. This issue will be discussed in the enhancement specification.

4.6 Shortest Path Routing With Failures

All the previous models assume there are no failures in the network switches or links. In

this model the effect of failures on static shortest path routing is studied. Failure modeling

has been studied fairly extensively by IRA [FER 84, PAL 85, VEL 86] and IRA clients. In

this project it was decided merely to demonstrate that failures can be modeled quite easily

for the example problem chosen here.

4.6.1 Failure Model

Failures are generated at the node failure in the main model ,ih an exponential distribution

with a mean specified by the PAWS global variable MLbf (see Fig. 2A). At node fai1~int
in the main model each failure transaction is assigned the switch (or link) that it is going to

cause to fail. To simplify the following description assume that only switches can fail;

links are handled similarly. It is assumed that all switches fail equally often. Assume

switch i has failed. The failure transaction then enters submodel switch (see Fig. 6A) and

proceeds to compute node sefail, where it sets a global flag indicating that switch i has

failed. The failure transaction then waits at TM (i) for a time with an exponential

distribution with mean which represents the mean time to repair the switch. At the

end of this time the failure transaction clears the failure flag (c1afil and leaves the model

-A-42-

I ,n

ID

in

LLL
LLr

.1, 1,

00

N

.4.A

II

A-3-

.4.

._,,

- A-,43-

Data messages that arrive at switch i undergo the usual shortest path routing calculation

(ciacrou. C , and check to see if the current switch has failed at node ghkf-l (The switch
may also fail while the message is being processed. This is checked at node golink). If so,
the message proceeds to the ith service node IM (i), where it waits in the queue behind the
failure transaction that caused switch i to fail. Note that in this way messages that arrive in
the middle of a switch repair only wait for the remaining time to iepair the switch. After
the failure transaction leaves, the message waits at [TR (i) for a time equal to the mean time
to retransmit the message, Mttrexmi. (It is assumed that some other network layer is
responsible for actually generating retransmissions. In this model the performance impact
of retransmissions is modeled by this extra processing delay). There is a slight inaccuracy
in the model here in that a new failure arriving at switch i would have to wait for
retransmissions to complete before bringing the switch down. However, since Mttemit
is much less than M\If. and the probability of the same switch failing twice in a row is low,
this scenario is ignored. The data messages are reinitialized at rexmit before being fed back
into this switch at node linkrel.

The failure of links can be modeled in a completely analogous way. Since this is clearly
within the capabilities of PAWS, and since failure modeling has already be=n studied so
extensively by IRA, link failure was not modeled for this project, as it was dot felt that any
new insights were to be gained by doing so.

4.6.2 Simulation Experiments

The model was run for 1000 time units using exactly the same parameters as in sec. 4.3.3.
The following values were used:

Mtbf 100 time units

Mar 25 time units

Mtrexmit 3 time units

The average response time distribution histogram computed by PAWS is shown in Fig.
6B.

-A-44 -

PAU 29 11A PAWS - V3.0. 11 (01-08-88) * RESP0 HSE TI E STAr IS TICS

RESPONSES FROM /MSOUICE (1) TO /DSTAr (1)
CATEGORY: /DATA

RESPONSE-TINE
INTERVAL NUMBER IN 41N H ISTOGRAM

INTERVAL INTERVAL 0 10 20 30 40 50 4 70 80 90 100
0.000 <:) X 2.000 97.000 39.55 A ,.,,, , I
2.000 <2 x < 4.000 76.000 34.55 I,*,*** ,*,*,**-< I
4.000 (z X < 6.000 30.000 13.64 LU***K*< I
6.000 <: X < 8.000 13.000 5.91 k* I
8.000 X < *ININMfY 14.000 6.36 IA**<I

TOTAL: 2-0.000

SUMMARY
MEAN: 3.603 2ND WM T: 58.801
VAR: 45.819 STHDRD BEV: 6.769

Fig. 6B Response Time Statistics for Shortest Path

Routing with Failures

-A-45 -

4.6.3 Adaptive Shortest Path Routing

The model discussed in sec. 4.6.1 considers the effect of failures when a static shortest

path routing algorithm is used. We now consider an adaptive shortest path algorithm
which bypasses a failed switch. The GPSM graph for the switch submodel of this new

model is shown in Fig. 6C.

-A-46 -

41
c 0D

C- a

A-47

Consider switch K in the network. When there are no failures, messages proceed through

the switch exactly as described in sec. 4.6.1. However, the switch behavior is more

complex when failures (and repairs) occur.

When switch K fails

1) host K is isolated from the rest of the network. Messages from.host K (new or

those already in process) proceed via arcs 1oc]Lail to wait at node fM for the

failure to be repaired.

2) messages from an adjacent switch J at switch K (i.e., those already in process)

would, in the real network, be lost. In the model they proceed via arcs

remQtefail to wait at seexmit for a time that includes:

a) time for switch J to detect the failure, and

b) time for switch J to retrnsmit the message.

The messages are modified at Ias i so that when they each crout they appear

to have just arrived at switch J, which, having detected that switch k has failed,

assigns them an alternate route that bypasses switch K. This routing calculation can

be done using the sophisticated loop-free routing algorithm described in [JAF 82].

3) new messages arriving at switch J that would have been routed through K are

also assigned the alternate route.

When switch K is repaired:

1) host K messages wait at = a further time Mttrexnt before proceeding

through node rxmit back into switch K
2) adjacent switches revert to routing messages via switch K.

This algorithm adapts to the failure of switches. The model realistically captures the

following effects of a switch failure.

a) the increase in message delays

b) the increase in traffic at adjacent switches

-A-48 -

c) the isolation of a host from a network when its DMP

(switch) fails, and the long delays that result

d) a local error control strategy, where re-

routing decisions are made by intermediate switches

rather than by the source host

Notice that this model assumes there is no delay between a switch failure or repair

occurring and this occurrence being detected by other switches in the network. In that

sense, this model does not consider the transient effects of failures.

This points out an interesting aspect of failure modeling. The system behavior when a

failure occurs can be characterized as consisting of three phases. In the first phase, the

component has failed but adjacent components are not aware of the failure. They will

experience a timeout while waiting for an acknowledgement, and will retransmit a copy of

the message via the original route, i.e., to the failed component. In phase 2 (some of) the

adjacent components will become aware of the failure, and will propagate this information

to the rest of the network. Depending on the error detection scheme used, this phase may

or may not take substantial time and involve generation of additional system messages. In

phase 3, all active components of the network are aware of the failure and messages are re-

routed as appropriate. In phase 3 a form of "failure steady state" has been reached while

the first two phases represent transient response.

It is expected that the performance degradation in phase 3 is due mainly to operating the

system with depleted resources. Thus messages may have to take longer routes to reach

their destinations, and there will be additional congestion at network switches. In phase 1,

on the other hand, performance degradation is due mainly to the timeout and retransmission

of messages. This will increase link and switch traffic. In the scheme described here,
where error control is carried out between adjacent switches, there will be increased traffic

between the failed component and adjacent switches. The performance degradation in

phase 2 may include the effects of increased traffic due to retansmissions for some

switches, longer delays due to depleted resources for switches aware of the failure, and

additional traffic due to system messages that propagate information of the failure.

However, depending on the error detection scheme used, phase 2 may be short-lived, and

the additional system traffic may be small.

-A-49 -

The model constructed for static routing in sec. 4.6.1 can be compared with the adaptive
routing model in this light. The former model corresponds to phase I of system behavior

when the system adapts to failures, while the latter model corresponds to phase 3. In that

sense the model of sec. 4.6.1 is more conservative than the model discussed here, and can
be used to determine whether a failure would cause unacceptably poor performance or

violate some network real-time constraint.

It is clear from the switch model in Fig. 6C that adaptive routing can be modeled using
PAWS; in fact the GPSM graph itself only requires some minor modifications. For this

reason this model was not actually constructed, as it appeared that it was clearly within the

capabilities of PAWS.

4.6.4 Discussion

Failure modeling has been discussed at length in [FER 84, PAL 85, VEL 86] and also in
various proprietary technical reports prepared by IRA clients. Two points that can be
gleaned from the experience gained in this project are discussed briefly here. The first is
that this model treats the occurrence of failures (and repairs) as a process independent of the
occurrence of data messages. This seems to be more realistic than simply causing data
messages to fail with a certain probability because:

1) in the latter case one should use the conditional probability of failure, ie., the

probability of failure given that a message has been generated.

2) failure rate measurements are often done by measuring the occurrence of

failures as continuous bit streams traverse a component. This provides an

estimate of the unconditional probability of failure.

The second point raised by this model is the possibility of introducing some high-level

facilities for modeling failures in C/PAWS. This is discussed in the enhancement

specification.

-A-SO -

5.0 Communications Switch Model

The switching element model studies the behavior of a switch in a circuit-switched

network. The switch receives call requests from stations connected to it, and attemnts to

assign outgoing lines to satisfy these requests. Eventually all outgoing lines are allocated,

and further incoming requests are called "lost calls". Circuit switches either discard these
requests (lost calls blocked or queue them internally (lost cals deiaved [HAM 86]. The

performance metric of interest is the blocking probability in the former case and the connect

time in the latter. This model estimates connect time for a simple queued mode (lost calls

delayed) circuit switch.

Since the object of the model is not to study routing, it is assumed that the switch is directly
connected to every switch in the network. In particular, there are N links between switch

A, the switch of interest, and switch B. There are S stations which forward call requests to

switch A via l dedicated links between the station and the switch. The call
processing scenario is also shown in Fig. 7A.

-A-51 -

Network:

Stations Switch Switch

N 1link s

local

loops

Call Processing:

S A B

phase 1 * send 10 , connect
request

phase 2 9 start to answer
send

data

phase 3 clear , * disconnect *down

Fig. 7A. Call Processing Scenario

A station S sends a seQuest message to switch A in an attempt to connect with switch
B. When a line becomes available, a connect message is forwarded to switch B, which
responds with an answer message. Switch A then sends a sat-t_.end message to S,
which begins the actual data (or voice or text) transmission. At the end of the transaction S
sends a c message to A, which sends a d to B. The ringing and
response at switch B's station is ignored [SCH 87].

-A-52 -

The connect time for a message from station S is the time from when station S sends a snd

r to the time it receives a strtt=,.. The hold time for a call is the amount of time

a link is held for that call, and equals the time from the connect message being sent from A

until the dsconnec message is processed at B.

5.1 Switch Model

Each of the control messages is modeled as a constant time delay in the model (nodes

connect r stsend sonne , shown in Fig. 7B.

-A-53 -

CLD

UU

cg

o' (tZ

C o
c 0r

3- 40

doo
tr-4

o l .f~co
- rP0

____ ____ ____ ____ v4

= 0

-A-54 -

The three phases of call processing are represented by arcs r.egs ansbpa and discphs,

and correspond to PAWS transaction phases 1, 2 and 3. The single server queues switchA

and switchB represent the contention for processing at each switch. The single

ALLOCATE node hakZ contains N tokens -- one per outgoing link. Lost calls are queued

at ink.. Links are released at the end of a call at node linkI, while the duration of a call

itself is assumed to have an exoonential distribution, modeled a node data.

Calls in the request phase go from cIke to switchB where they wait. After processing at

B the calls are now in the answer phase, and circulate via answe and switchA to startsend

Calls that are in the disconnect phase leave da= and proceed by nodes wi tchA and

disconnect to switchB and eventually leave the model via endcall

5.2 Simulation Experiments

The queued node circuit switch was simulated for 10,000 time units using the same

parameters as in [SCH 87]. These are shown ia Fig. 7C, along with a histogram of the

average connect time, i.e., the response time for messages going from c to IMartsd

Messages were generated with an exponentially distributed inter-arrival time]. All
control messages were assumed to have the same constant delay (n = Tanswe -

--tartsen =C == Tdi..nnct = 0.091) except for the connect message, 'which was

assumed to have a much larger delay as it carries substantially more information (Tconnect

= 0.91). Data messages were assumed to experience a delay TJaa exponentially

distributed with a mean of 9.1 units. The processing time of the switches was very close to

zero. With these assumptions the average connect time was found to be 1.76 units, which

agrees closely with the value obtained from an analytic model: 1.7 units [SCH 87].

- A-55 -

6E 11 P; PAWS - V3.0. 11 (01-08- 88 A RESPONSE T IM STATISTICS

:SpONSES FROM /CALLIEG 1) TO /STARTSEND (1)
CATEGORY: /REG

RESPONSE-TIME
INTERMAL NWIER IN I IN HISTOGRAM

INTEIYAL IrMAL 0 10 20 30 40 50 6) 70 80 90 100
0.00 ,: < 0.500 0.000 0.00 1 <
0.500 X 1.000 0.000 0.00 I<
1.000 : X 14.0 54".000 &.8.7 Ik,*,*k *M* ,x***********,(
1.500 <: X 2.000 195.000 2.93 W*<
2.000 *= X INFINITY 93.000 14.80 L I

TOTAL: 6644.000

SI.ARY
MEAN: 1.757 2ND MOMENT: 5.745
V : 2.659 STNDRDD BE: 1.631

AES OF SCAARS:

/Nift. INKS = 10
/TREESTS = 1.500
/TSDJREG = 0.07
/TCOKNNL' = 0.910
/TAN R = 0.091
/TDATA 9.100
/TD 0.091
/TDATACD 9.191
/TSTA SEND : 0.091
/TDISCOWEC = 0.091
/TS~ITOA 0.010
/TSwITCHB 0.010

Fig. 7C Connect Time Statistics for Queued Mode

Circuit Switch

-A-56 -

5.3 Discussion

This model is a simple but fairly useful simulation of queued mode call processing for

communication between two network switches. It is quite easy to generalize to the case

where there are M switches with a different number of links between switch A and other

switches by using arrays of SERVICE and ALLOCATE model. Since this can clearly be

done within PAWS it was not pursued.

An interesting point is that to be accurate in the case where the-re is more than one switch to

which switch A is connected, the "background" traffic in the network needs to be

simulated. The background traffic represents the load at switchA and itB due to call

processing for calls between switch A and other switches, and switch B and other

switches. One approach would be to model this traffic precisely using arrays of SOURCE

and ALLOCATE nodes, one per source-destination pair. There is a better approach.

Since the call processing scenario is deterministic, the background processing can be

calculated quite accura!ely for a certain network node, and fed as transactions that interfere
with A-B comnunicaf in at nodes switchA and swith B. This will give a more realistic

estimate of network benavior, without the complexity of detailed circulation.

-A-57 -

6.0 Conclusions

The modeling and experimental evaluation task of this phase I project has demonstrated that

it is feasible to model many aspects of communications systems using PAWS. Several

issues wexe raised during this task, and some limitations were found in PAWS, many of

which will be overcome in ES/PAWS. These issues will be discussed in detail in the

enhancements specification.

-A-58 -

References

AND 84
G. E. Anderson "The Coordinated Use of Five Performance Evaluation
Methodologies", Communications of the ACM Vol. 27, no. 2, 1984.

BRO 88
J. C. Browne, P. Jain, D. M. Neuse and M. Esslinger, "ES/PAWS ,- A System
Level Design Aid," submitted for publication in Proceedings of the Design
Automation Conference, June, 1988.

CON 86
Customer confidential document. The model involves a Sperry 1100/44 computer
system with multiple command, arithmetic and peripheral processors used for real-
time computations. Permission is being sought to disclose this information.

DOR 84
Vladimir Dorfman, "SNA Communication Line Performance Analysis", Fujitsu
Systems of America, Technical Report 92-00024 July, 1984 (proprietary).

FER 84
V. Fernandes, 1. C. Browne, D. Neuse, and R. Velpuri, "Some Performance
Models of Distributed Systems", Proceedings of the CMG XV International
£ fncn_ Dec., 1984.

HAM 86
J. L. Hammond and P. J. P. O'Reilly, Performance Analysis of Local Computer
Networks Addison-Wesley, 1986.

IRA 86
"PAWS Performance Models of a Computer Network Hub", Information Research
Associates, Internal Document, 1986.

IRA 87a
T-Yormation Research Associates, Performance Analyst's Workbench System
(PAWS) User's Manual, 1987.

IRA 87b
Information Research Associates, Graphical Programming of Simulation Models
(GPSM) User's Manual. 1987.

JAF 82
M. Jaffe and F. H. Moss, "A Responsive Distributed Routing Algorithm for
Computer Networks", IEEE Trans, On Comm., Vol. COM-30 no. 7, pp. 1758-
1762, July 1982.

JAI 87
Prem Jain, "Architecture Design of a VLSI Chip Using PAWS/GPSM", jejij
R Information Research Associates, July 1987.

- A-59

I IIII I I I ! 1 I II I I6

LAW 82
A. M. Law and W. D. KeLton, Simulation Modeling and Analysis McGraw-Hill,
1982

NAV 87
United States Navy Contract No. N60021-86-C-0145, High-Level Simulation of
Electronic Systems, 1987.

PAL 85
Annette Palmer, J. C. Browne, 1. Silverman, A. Tripathi, and R. Velpuri, "A
Performance Model of a Fault-Tolerant Distributed System for Evaluating
Reliability Mechanisms", Proceedings of the CMG XVI International Conference
1985.

SCH 87
Mischa Schwartz, Telecommunication Networks: Protocols- Modeling and
Analysis. Addison-Wesley, May 1987.

TAJ 77
W. D. Tajibnapis, "A Correctness Proof of a Topology Information Maintenance
Protocol for Distributed Computer Networks", Conlm,.ACM. vol. 20, pp. 477-
485, July 1977.

TAN 81
Andrew Tanenbaum, Computer Networks Prentice-Hall, 1981.

UPC 84
E. Upchurch, "Modeling Packet-Switched Interprocessor Communications",
Proceedings of the 15th Annual Modeling and Simulation Conference, University
of Pittsburgh, 1984.

VEL 86
Rajkumar Velpuri, "Performance Study of Zeus Distributed System with Different
Communication Networks", M. S. Thesis, The University of Texas at Austin,
May, 1986.

-A-60 -

Appendix B

C/PAWS Enhancement Specification

Contents

1.0 Introduction ... B1

2.0 Sum mary of Proposed Enhancements ... B2

3.0 User Interface .. B4

3.1 Model User Interface versus Model Developer Interface B4
3.2 Forms and Menus .. B4
3.3 Graphical Interface .. B8
3.4 Graphical Output .. B10
3.5 Network Topology .. B10

4.0 Modeling Methodology ... B11

4.1 Submodels and Libraries .. B1
4.2 C Function Library ... B12
4.3 Integrity Constraints and Reasonableness Checks B12

4.3.1 Node and Transaction State Integrity B12
4.3.2 Statistics Integrity ... B13
4.3.3 Subm odel Integrity .. B13
4.3.4 Reasonableness Checks .. 613

4.4 Statistics Requests .. B14

5.0 Comm unications System s Features .. B15

5.1 Timeout Processing ... B15
5.2 Flow Control .. B18
5.3 Routing Algorithm Utilities .. B18
5.4 Analytic Bottleneck Analysis ... B19
5.5 Hierarchical sim ulation ... B19

5.5.1 Definition ... B20
5.5.2 General Approach .. B20
5.5.3 A simple exam ple .. B21

6.C Language Enhancements .. B22

6.1 Failure Modeling Methodology .. B22
6.2 Interrupt Resum ption Nodes .. B23
6.3 FORK and JO IN Constructs ... B24
6.4 Source Node Control .. B24

Contents (Cont'cI)

7.0 Conclusions.. ... B25

References .. 8B26

CECOM COMMUNICATIONS SYSTEMS MODELING PROJECT PHASE I

C/PAWS ENHANCEMENT SPECIFICATION

1.0 Introduction

This report discusses the features and enhancements required in C/PAWS in order to make

performance modeling of Army communications systems easier and more efficient.

C/PAWS will be based on IRA's existing simulation products PAWS and GPSM [IRA

87a, IRA 87b], and more directly on ES/PAWS [BRO 88], a top-down design tool for

electronic systems being developed for the Navy.

The object of this Phase I study is to investigate the feasibility of using a simulation tool

based on PAWS and GPSM to model the Army's communications systems. This Phase I

study was acconrphished through discussions with CECOM personnel, study of the

CECOM communications systems literature, constructing prototype models of some

representative Army communications systems, protocols and algorithms [IRA 88], and by

drawing upon IRA's previous experience in this area [FER 84, PAL 85, VEL 86]. This

enhancement specification discusses the many issues raised by this investigation, and how

they relate to the feasibility of using PAWSIGPSM to model Army commur" ations

systems. An attempt has been made to be as specific as possible when disc ..ssing these

issues while avoiding placing unnecessary constraints on the C/PAWS implementation to

be carried out in Phase I. Where possible the high-level issues have been discussed in

detail, and some alternative implementation strategies suggested, rather than choosing one

implementatior technique and specifying it in fine detail. The object is to discuss the

feasibility of using PAWS and GPSM, rather than to specify an implementation of

COPAWS. The detailed technical implementation decisions will be the focus of the early

stages of Phase U.

The following sections are broadly classified into the enhancement issues relating to the

user interface, modeling methodology, language enhancements, and communications

systems features. Many of the enhancements desired in C/PAWS will in fact be available

with the ES/PAWS system under development. The following section summarizes the

enhancements discussed in this report.

- B-I -

2.0 Summary of Proposed Enhancements

ES/PAWS and C/PAWS will be more flexible and powerful than the currently existing
PAWS software, and in particular will incorporate the expressiveness of the C
programming language. Through the use of the highly user-friendly graphical interface,
GPSM, and the use of librdnes of submodels and procedures, a user will be.able to
simulate complex commuications systems without needing, in general, to actually write

code. Creating and maintaining the sub models and associated procedures, however, will
require some familiarity with ES/PAWS syntax; this would be carried out by a model
developer rather than a model user (see sec. 3. 1).

Using C/PAWS the user will be able to obtain detailed simulation results; these results will
then be post-processed by other software packages to display the results of a single
simulation run graphically (s'uch as histograms of response times), as well as the resuls of
several simulation runs (such as variations in response time as the offered load is inmased
upon each new run).

Some features of ES/PAWS pardculary useful for communications modelinIg are:

" access to the C language
(data structures, expressions, functions, etc.)

" macro pre-processor

" submodel parameters

* finite-state macnines
" enhanced version of GPSM, including:

" structured input facilitiy (SIF)
* graph !ibrary facility
" scrolling of GPSM graphs
• improved on-line help

" critique of GPSM graphs

- B-2 -

The proposed specific C/PAWS enhancements include:

1) Forms and menus for the model user interface

2) User-defined icons for specialized components

3) Convenient specification of statistics collection, including statistics involving

submodels

4) Processing of simulation output for graphical display

5) A TIMEOUT node type for modeling communications protocol features

6) An Interrupt Resume node type for making failure modeling easier. This fits into an

overall failure modeling methodology

7) Libraries of C functions for analytic bottleneck analysis and routing algorithm

calculations

8) Libraries of re-usable submodels encapsulating common communications subsystems

9) Specification of integrity constraints and reasonableness checks for nodes, transaction

states, submodels and simulation results

10) More flexible FORK and JOIN constructs

11) Explicit control of the generation of transactions at SOURCE nodes, allowing a user to

control a simulation run more closely

12) Support for hierarchical simulation

- 6-3 -

3.0 User Interface

GPSM currently provides a highly friendly and intuitive interface to PAWS. The interface

to C/PAWS will be made even more powerful and easy to use, as outlined below. Many of

the suggested enhancements are currently planned or being implemented as part of ongoing
work for ES/PAWS and other IRA projects.

3.1 Model User Interface versus Model Developer Interface

GPSM and ES/PAWS provide an excellent interface for the model developer. A model

developer requires knowledge of the PAWS language syntax and some programming skill.
The everyday user of a model, however, may be someone such as a communications

engineer, network capacity planner, or in general someone other than the model developer.

A model user is someone with technical expertise in the area of communications systems
who is typically concerned with obtaining simulation results for design or performance

evaluation purposes. This is particularly true in the area of communications systems where

experts with highly specialized knowledge of communications may not be familiar with
programming. Such a user may not wish to see the GPSM or C/PAWS implementations of

variou; communications system components.

This section discusses C/PAWS enhancements that are aimed primarily at a model user.

Later sections discuss enhancements aimed primarily at a model developer.

3.2 Forms and Menus

An ideal interface for the model user would consist of standard forms and menus. These

could prompt the user for communications systems parameters and configurations. This
feature not only provides convenience but also reduces user errors.

The form or menu template itself can be created for a model by the model developer, thus

allowing developers (such as Cecom or its consultants) to provide customized model
interfaces for their users.. One approach to implement this is to allow C/PAWS to invoke

commercially available forms management software package. There are a wide variety of
such forms managers available in the environments where C/PAWS will run.

B--4-

An alternative implementation is to use IRA's EDGE graphical package and SIF (Structured
Input Facility) to provide a superior, customized facility. An example of a SIF form for the
communications switch model developed for this project is shown in Fig. 1. The user may
input %witch parameters from a sub-form (Fig. 2), and choose between blocked and
delayed calls from a menu. We propose to use EDGE and SIF for this purpose during
Phase II.

- B-5 -

czntra I Message Lorgths

soft Request: Start Send:

IConnect. Cl ear OCasn:

Anwew: Cscarcoct:

Lengt 0# Oata Moosupe:

tct.7m aqot

Figure 1. Example SIF Form

-98-6 -

Control message Iangths

Send Reauest: Start Send:

Connect: C'Iear ~Oan:

Answer- oisconnect:

~Buffers: 3utga~ing Ltri:

Figure 2. SIF Form with a Sub-Form and a Menu Open

-13-7 -

3.3 Graphical Interface

It is desirable to allow the user of the simulation system to create meaningful icons, e.g.,
representing switches, stations etc., and associate icons with submodels representing those
system components. This capability will be provided by applying the submodel
class/instance concept in ES/PAWS. A user will be allowed to create a specialized icon to

represent a submodel (or node) class. This icon will replace the submodel call node in a
GPSM graph. Once created, these application-specific icons for submodels could be

applied by all users. Each instance of the user icon will have parameters (instance
variables) that can be filled in independently by a user.

The capability for a user to define a specialized icon already exists in the palette editor
available with EDGE, the graphics software upon which GPSM is based. Examples of
user-defined icons are shown in Fig. 3. The palette editor allows a user not only to draw

the icon but specify it's graphical characteristics, e.g., the entry and exit points, the flipping
operations that are allowed on it, etc. This facility can be extended so that:

1) A user can create a specialized icon for a GPSM submodel class that will
take the place of the call node for that submodeL

2) A user can conveniently specify the parameters of a particular instance
of a user-defined icon.

B-1 I

=gure 3. Eamoles of User-Defined Icons

3.4 Graphical Output

PAWS currently provides graphical output by allowing histograms of various quantities to
be displayed, e.g., response times, queue lengths etc., within a single simulation run. It is
desirable to provide a more powerful facility to the user, that will allow the graphical output
of simulation results across several simulation runs, in terms of line graphs, bar graphs etc.
However, it does not seem appropriate for IRA to expend effort in developing the actual
graph-drawing software, given the many high quality graph packages commercially
available. We propose to store the simulation output in a standard format. A separate
program can be written to convert the simulation output to the input format of the user's
chosen graph package. IRA proposes to provide such a program for one such
environment to the Army, as part of the Phase 11 effort. Conversion programs for other
enivironments can be developed either by the Army or contracted out.

'I he benefits are to:

1) make the graphical display of statistics from a single run easier,

2) store statistics from a single simulation run in a form that is convenient
for both machines and humans to read,

3) take statistics from several simulation runs and display graphs of key
quantities versus changes that occur in model parameters between the

simulation runs (or versus simulation number), and

4) allow the user to specify the type and detail desired in the graph.

3.5 Network Topology

The user should be able to construct a model that reads in the network topology from a
database. It will be useful to provide a facility that will output a network topology graph
constructed from a user-specified topology table. Such a graph will be valuable for
providing an intuitive feel for the network to be modeled as well as for visually verfiying

that the topology data is correct.

- B--

4.0 Modeling Methodology

Communications systems are typically built up out of standard hardware and software

components. To exploit this replication, our approach is to allow a user to build a
parametrized submodel representing a certain component of the system, and store it in a
library. When needed, a submodel can be extracted from the library und the appropriate

parameters filled in by the user. This approach permits rapid construction of perfomcnce

models, allowing the user to build upon preAous work, and makes it easy to answer "what

if' types of questions. In addition to the submodels, certain commonly-used algorithms
can also be stored, in a parametrized fashion, and incorporated as needed, e.g., routing

!Zorithms for circuit-switched networks.

The following sections deal with enhancements to C/PAWS that will help the model

developer to adopt a powerful modeling methodology.

4.1 Submodels and Libraries

We have found that it is difficult to verify the correctness of models of communicaions

systems, largely due to the complexity of the communications systems themselves. To
manage this complexity, it is essential to exploit the natural layered aspect of
communications systems by developing hierarchical performance models. A step further is
to re-use the models for common communications subsystems. The model developer will
then have a library of communications submodels that will substantially reduce the

modeling effort.

Unlike PAWS 3, the submodeling facilities in C/PAWS will provide convenient parameter-
passing facilities similar in power to those for procedure calls in conventional programming

languages. This will provide the modularity and information-hiding needed for model
reusability.

An important addition to C/PAWS is a versatile and general-purpose library facility,
comparable in power to those available for programming languages. A library facility for
submodels will be available that:

1) allows convenient storage and retrieval of complete submodels of arbitrary size,

- B-11 -

2) allows a user to specify a library by name as input to a C/PAWS compilation,

and

3) allows a library to be searched sequentially, in order, so that external references

in the main model can be resolved.

Submodels such as our Ethernet model [FER 84] and a token ring model [VEL 86] would

be suitable for inclusion in a communications submodel library.

4.2 C Function Library

Certain common aspects of communications systems are better captured using programs

written in a high-level language rather than submodels. An example is a set of functions to

implement various common routing algorithms for switched communications networks. It

will be useful to develop a library of such reusable functions written in C for use by the

model developer. The developer may then develop forms or menus for these functions in

order to obtain parameters from the model user, just as was done for submodels.

C functions such as those for varous routing algorithms, eg. static shortest path and

flooding would be suitable for inclusion in a C function library.

4.3 Integrity Constraints and Reasonableness Checks

Model integrity constraints and consistency checks will be important for modeling

communications protocols. The following sections present some alternatives in this area.

4.3.1 Node and Transaction State Integrity

The CPAWS user will be able to insert statements in each node to cause transactions to test

the integrity and consistency of transaction, node, and submodel state variables. The C

language should serve well here.

4.3.2 Statistics Integrity

The C/PAWS user will also be able to insert statements in the main function to test the

integrity and consistency of performance statistics at the end of the simulation. For

- B-12 -

example, one might want to check that the sum of the throughputs at nodes A and B equals

the throughput at node C.

4.3.3 Submodel Integrity

The C/PAWS user may want to check the consistency of some statistics concerning objects
local to some submodel. Assuming path names for library submodels are available, one

can embed integrity checks into a model to be placed in a library as follows. For each

submodel in the module, write a C function to perform the submodel integrity check and

place the C function in the global environment of the module. As part of the external

specification for the module, state that each such integrity function should be called by the

main function at the end of the simulation.

4.3.4 Reasonableness Checks

Often one has some idea before running a model what the range of possible values are for
various performance statistics. For example, one might know that mean response times

less that one second or greater that one minute are unreasonable. A mean response time of
5 hours would almost certainly indicate a modeling error. With PAWS 3, the user must

search the statistics report manually for unreasonable statistics.

C/PAWS may allow the user to decare the reasonable range of values for each requested

statistics. C/PAWS could then highlight in some prominent manner those statistics falling

outside these ranges. The user could implement such reasonableness checks in C.
However, a declarative language extension would be preferable.

- B-13 -

4.4 StatistiL Requests

In PAWS 3 statistics requests are embedded within individual nodes and submodels. The

submodel developer may not known which statistics the user desires. In C/PAWS this
problem will be overcome by a) allowing statistics request statements in the global
environment to reference submodels drawn from a submodel library by a full path name or

b) allowing conditional statistics requests, which would cause the specified statistics to be

collected if a condition (evaluated at RESET time) were true. A library submodel may
contain statistics requests for all statistics of interest, which could then be turned on by the

user as desired.

A related issue is the ability to separate statistics requests and simulation control from the
model specification. This will be addressed in ES/PAWS and C/PAWS by allowing
separate compilation of model modules, so that the entire model need not be retranslated
when changing a few parameters. User interfaces that obtain parameters interactively at run

time will also be useful here.

- B-14 -

5.0 Communications Systems Features

All the enhancements discussed in this report will make modeling of communications

systems easier. In this section we discuss C/PAWS features that will be especiafly useful

for communications modeling but may not be relevant for other applications.

5.1 Timeout Processing

Timeouts are a very widely-used mechanism in communications protocols, particularly at

the lower layers of communications systems. The use of timeouts for a data link control

protocol has been modeled in this project [IRA 88]. We propose to incorporate a special

node type for timeout processing in C/PAWS. The icon and abstract semantics of a

TIMTEOUT node type are shown in Fig. 4. This figure specifies the actions to be taken by

C/PAWS when various events occur at a TIMEOUT node using intuitive pseudo-C

statements. The usage of such a timeout node is shown in Fig. 5.

- B-15 -

Timeout Node

Semantics (pseudo - C)

switch (event) I
as NEWMESSAGEARRIVED:

save original for retransmission
save EXPECTEDACK and MAXREXMIT information
set TIMEOUT interval

transmit one copy; break;

as ACKARRIVED:

if this is EXPECTEDACK for some original msg
remove TIMEOUT event

mark original message as ACKEDMSG
etl

mark this as a BADACK
propagate original and ACK message; break.

as TIMEOUT:
increment retransmission count

If retransmit count > MAXREXMIT

mark original msg as TOOMANYREXMIT

propagate original message

set TIMEOUT interval

transmit one copy

break
Oefault :

error

Fig. 4 Timeout Node Semantics

- B-16 -

ACKEDMSG

TOOMANYREXMIT 4

NEWMESSAGE MESSAGE XMIT

-- (: AND REXMIT

I. TIMEOUT
ACK IBAD ACK

EXPECTED ACK

Figure 5. Timeout Node Usage

-B-17 -

5.2 Flow Control

Flow control in communication systems is intended to prevent a fast sender of messages

from overflowing the cq p-cit,Y of a slow receiver. Two schemes are common. In the first,

the sender produces messages up to a fixed predetermined number and waits for

permission from the receiver to send any more. In the second, the sender continues to send

messages until instructed by the receiver (via a choke packet. XOFF signal; or CTRL-S

character) to stop doing so; the sender resumes upon receiving an explicit signal from the

receiver.

In C/PAWS and ES/PAWS it will be possible to model both these schemes using two
nodes. The first can be modeled using an ALLOCATE and CREATE node pair, while the

second can be modeled using a SERVICE node and a SET node. Both these mechanisms

are quite general and convenient, so it is not felt necessary to introduce a new node type for
modeling flow control.

5.3 Routing Algorithm Utilities

Some routing algorithms involve the creation of routing tables, e.g. static shortest path

routing [TAN 81, SCH 87] as implemented in this project [IRA 88]. These involve some

fairly sophisticated algorithms that a model user may not wish to compute by hand. Such
algorithms may be provided by the model developer in the form of C library functions,

possibly with a forms or menu-driven interface for a model user.

Communications systems involve other algorithms ancillary to the main modeling task that

would be useful to a model user. These could be handled similarly. An example of such a

class of algorithms is discussed in the next section.

- B-18 -

5.4 Analytic Bottleneck Analysis

One can rule out many network design or configuration options as infeasible with simple

analytic bottleneck analysis. The following example is infeasible regardless of what goes

on at BALLOCATE and BRELEASE.

ASOURCE --> BALLOCATE -- > CSERVCE --> BRELEASE-> DSINK

(expo 1) (expo 2)

Such analytic bottleneck analysis might involve queueing-theoretic (product torm) analysis

and ad-hoc protocol analysis. An example of the lattcr is the simple conservative bottleneck
analysis carried out in the Task 3 report for the standard flooding algorithm for a switched

network. This kind of bottleneck analysis can be extremely valuable both for verifying that

a model is correct and for quickly evaluating design options, and would typically be carried

out by a comunications engineer.

Some programs for analytic bottleneck analysis could be placed in a C function library as

discussed in sec. 4.2. It may be desirable for a model developer to provide wform or

menu-driven interface to such functions for the model user.

5.5 Hierarchical simulation

Consider a wide-area network consisting of a collection of computers connected by a
packet switching network. One might be able to construct an efficient, detailed model of

each computer and an efficient model of the packet switching network. However, an

efficient, detailed model of the combination of the network and the individual computers

may be infeasible.

Suppose we could simulate an individual computer in an off-line experiment and construct

an approximate submodel of the computer based upon this experiment. We could

incorporate this approximate submodel into the overall network model. The resulting

model could yield accurate performance statistics in a much faster, cheaper simulation than

the complete, detailed simulation. This is an example of hierarchical simulation.

The motivation for hierarchical simulation is the possibility of dramatically reducing the

time and expense of large communications models. Unfortunately, there is no general

- B-19 -

method for hierarchical simulation that has been validated. We propose a new method that

we expected to work well, but some validation work must be done (in Phase II).

5.5.1 Definition

Hierarchical simulation refers to the following:

a) separate off-line simulation of one or more submodels,

b) constructing simplified approximations of these submodels based upon

information (e.g. performance statistics) collected in the off-line experiments,

and

c) incorporating these simplified approximations into a higher-level model.

5.5.2 General Approach

The general approach we suggest is to:

a) allow the user to specify the f= of a function mapping submodel and

transaction state to transaction response time,

b) conduct a number of off-line simulations of the submodel, varying submodel

parameters in each simulation,
c) in each off-line simulation, for each transaction, record the model state,

transaction state, and response time,

d) use regression analysis on this data to determine the parameters of the function

specified in (a) above,
e) construct an approximate representation of the submodel that evaluates the

submodel and transaction state on entry to the submodel and evaluates the

function constructed in (d) to obtain a submodel response time for the

transaction.

- B-20 -

5.5.3 A simple example

Suppose we specified the following submodel response time function:

R=a*N

where

R = transaction submodel response time,

N = number of transactions in the submodel, and

a = a parameter to be determined by regression analysis.

We would conduct a number of simulations of the submodeL As each transaction entered

the submodel, we would record N, the number of transactions in the submodel. As each

transaction left the submodel, we would rtcord R, the response time. By the end of the

experiments we would have recorded a large number of (NR) pairs. We would perform

regression analysis to determine the best value of a. We would then construct the
approximate submodel:

ENTER ---- > DELAY (delay time = a N) -> RETURN

- B-21 -

6.0 Language Enhancements

The model developer using C/PAWS will have a very powerful language available,

combining the flexibility and expressiveness of C with the high-level modeling features of

PAWS, ES/PAWS, and GPSM. This power will be further enhanced by some of the
facilities discussed in this section, such as interrupt resumption nodes and more flexible

FORK/JOIN constructs.

6.1 Failure Modeling Methodology

Failure modeling has been studied extensively at IRA [FER 84, PAL 85, VEL 86] and by
IRA clients [CON 86], as well as in the context of this project [IRA 88]. The facilities

available for failure modeling are flexible and powerful. Due to the special relevance of
failure modeling for the Army's communications systems, this aspect of PAWS will be

enhanced in C/PAWS as discussed below.

Currently, failure modeling in PAWS involves creation of a failure transaction tha

intemrupts the processing of normal transactions for a time equal to the time to repair the
failed component. In C/PAWS this will be made easier using an interrupt resume node

described in sec. 6.2. The following failure modeling methodology is then recommended:

Define a globally visible failure flag for each device. The flag will be true
if and only if the device has failed and has not yet recovered.

When a device fails, set its failure flag true and interrupt all transactions
in the submodel representing the device.

Use an interrupt resumption node (see sec. 6.2) in that submodel.
Typically, interrupted transactions should be destroyed at a sink
immediately following the resumption nodes, but occasionally some

special processing will be needed.

In the interrupted submodel, place an interrupt edge from the enter node
to a sink and from each call node to a sink. Label these edges with the

device failure flag. All transactions entering or returning to a failed
submodel will immediately sink.

- B-22 -

Timeouts specified external to the submodel will cause retransmission of

messages, as in the real system.

When a device recovers, set its failure flag to false.

In many cases it will be possible to simplify th'is modeling approach. It is possible to view

the occurrence of a failure as consisting of several phases. Each phase can be modeled

independently, under certain assumptions. Thus instead of generating failures

dynamically, it is possible to model the behaviour of a system at some phase of its failure
mode. This results in shorter simulation runs and simpler models. This methodology is

described in Sec. 4.6 of tle Modeling and Experimental Evaluation report.

6.2 Interrupt Resumption Nodes

C/PAWS will allow transaction interruptions to be specified more conveniently than PAWS
3. For example, all the transactions in category C in submodel S can be interrupted.

A new interrupt resumption node type will address this issue nicely. There can be at most
one interrupt resumption node per submodel. If one is present, all transactions interrupted
in that submodel will immediately proceed to the resumption node. If one is not present,

interrupted transactions behave as in PAWS 3; they depart their current node along an

edge.

Interrupt resumption nodes have no specification. Transactions arriving at such nodes
depart immediately along an edge. Interrupt processing now can be specified easily using

all the ES/PAWS capabilities.

- B-23 -

6.3 FORK and JOIN Constructs

The PAWS FORK and JOIN constructs will be made more flexible in C/PAWS. These

enhancements will allow the construction of reusable submodels and the collection of

arbitrary statistics easier. Some specific proposed enhancements are:

1) Allow a parent to proceed directly through a FORK without delay. The parent

will retain its resources instead of passing them to the eldest child. This

enhancement will allow parents to participate in the model at the same time as

the children.

2) A consequence of the first enhancement is to allow a parent to proceed to a

JOIN and wait there until all its children JOIN.

3) Allow a child to force the release of a parent even before all children have

reached a JOIN. This may be useful in communications systems where, once

one copy of a message has reached the destination, the original may be

destroyed.

6.4 Source Node Control

The model developer sometimes wants a source node to remain inactive for a while at the

beginning of the simulation or to halt before the simulation ends. In these cases, one

would like to specify start and stop times for the source node. A source node with start

time = 500.0 would not begin generating transactions until time 500.0. A source node with

stop time = 1000.0 would stop generating transactions at time 1000.0.

Stop times could be used to stop the generation of new messages, and allow the system to

consume the messages already generated C'drain" them) before stopping the simulation. A

less declarative but more general approach to this problem would be to allow set nodes to

affect source nodes. A power of zero would halt a source, a power of one would restore

normal behavior. Other positive powers would simply scale the interarrival times.

-B-24-

7.0 Conclusions

A wide variety of enhancements have been discussed to the already powerful features of

PAWS 3 in order to make modeling of Army communications systems easier. Although

such modeling is already feasible in PAWS, it will become even faster and more efficient in
C/PAWS when the enhancements discussed here are incorporated.

An attempt has been made in this report to discuss the enhancements proposed for

C/PAWS at a fairly high level. It is felt that specific implementation decisions should be
made in the early stages of the Phase I implementation project. This allows CECOM to
discuss and review the proposed enhancements, and avoids placing unnecessary
constraints on the C/PAWS implementation at this stage of the project.

We believe that C/PAWS will be a highly productive, elegant tool for modeling Army

communications systems when the proposed enhancements are incorporated. It is quite
feasible to implement these enhancements using a variety of implementation strategies

discussed in this report, and in fact some are currently being implemented as part of the

ES/PAWS project

- B-25 -

References

BRO 88
J. C. Browne, P. Jain, D. M. Neuse and M. Esslinger, "ES/PAWS - A System
Level Design Aid", submitted for publication in Proceedings of the Design
Automation Conference, June,1988.

CON 86
Customer confidential document. The model involves a Sperry 1100/44 computer
system with multiple command, arithmetic and peripheral processors used for real-
time computations. Permission is being sought to disclose this information.

FER 84
V. Fernandes, J.C. Browne, D. Neuse, and R. Velpuri, "Some Performance
Models of Distributed Systems", Proceedings of the CMG XV International
Conference, Dec., 1984.

IRA 87a
Information Research Associates, Performance Analyst's Workbench System
(PAWS) User's Manual, 1987.

IRA 87b
Information Research Associates Graphical Programming of Simulation Models
(GPSM) User's Manual, 1987.

IRA 88
Information Research Associates, Modeling and Experimental Evaluation Report,
Task 3 of Army SBIR Phase I project, draft submitted to CECOM, March 18,
1988.

NAV 87
United States Navy Contract No. N60021-86-C-0145, High Level Simulation of
Electronic Systems, 1987.

PAL 85
Annette Palmer, J. C. Browne, J. Silverman, A. Tripathi, and R. Velpuri, "A
Performance Model of a Fault-Tolerant Distributed System for Evaluating
Reliability Mechanisms", Proceedings of the CMG XVI International Conference,
1985.

SCH 87
Mischa Schwartz, Telecommunication Networks: Protocols, Modeling and
Analysis, Addison-Wesley, May 1987.

- B-26 -

TAN 81
Andrew Tanenbaum, Computer Networks, Prentice-Hall, 198 1.

VEL 86
Rajkumar Velpuri, "Performance Study of Zeus Distributed System wich Different
Communication Networks", M.S. Thesis, The University of Texas at Austin, May,
1986.

-B-27-

Appendix C

Outline of PAWS and GPSM

Introduction to

Performance Analyst's Workbench System (PAWS)

and

Graphical Programming of simulation Models (GPSM)

1.0 Introduction

GPSM is a graphical modeling language that takes advantage of the natural human affinity

for pictorial and visual presentation of information. In the past, simulation models have

been coded in a variety of general purpose procedural languages such as FORTRAN and
PASCAL. More recently, a number of higher level languages specifically designed for

simulation modeling have made it possible for the modeler to concentrate more on the
details of producing an accurate model and less on the details of coding that modeL

One of the more powerful and successful examples of such simulation languages is the
Performance Analyst's Workbench System, PAWS. PAWS provides the modeler with a
number of high-level primitives such as a variety of queueing disciplines (first-come-first-
served, first-fit, priority, etc.), probability distributions (uniform, exponential, ERLANG,

etc.), and output statistics (throughput, queue lengths, queueing times, etc.). PAWS also
uses a pictorial representation of abstract queueing networks called Information Processing

Graphs (EPGs) as both a design tool and a documentation method for the simulation models
that are ultimately coded in the highly declarative PAWS language. These EPGs have

tended to serve a purpose in the world of simulation modeling analogous to the use of flow

charts and other visual aids in general-purpose procedural programming. This despite the
fact that queueing networks seem to have a much more natural graphical representacon.

Very recently, the availability of low-cost, medium- and high-resolution graphics machines

has made it feasible to use the techniques of graphical programming to produce simulation

models directly. The GPSM system is a tool that allows IPGs to be drawn and modified

directly on the graphics screen of any IBM-PC compatible machine using a mouse as a

pointing device. Such graphs, though still very useful for design and documentation
purposes, may be automatically translated into simulation programs in the PAWS language.

This enables modelers to deal directly and exclusively with the pictorial Lnformation in the
IPGs in order to design, execute, and refine their simulations.

- C-i -

By using GPSM as a graphical interface to PAWS, all the advantages of a pictorial

programming language may be obtained without sacrificing the power and versatility of a

compiled, specialized simulation language. The visual nature of the graphical interface

greatly speeds and simplifies the transfer of ideas into symbols by utilizing the must natural

and straightforward kinds of symbols: pictures.

A performanre modeling project using GPSM and PAWS might proceed as diagrammed in

Figure 1.

System. Construct
Sstem GPS
Design IPGs

Analyze PAWS
andMoe

Refine Model

Performance PAWS
StatisticsSstop#

~4~i

Fig. 1

An analyst will generally abstract information from the initial system design in order to

draw information processing graphs (using GPSM) that capture the important performance

characteristics of the design. Further information such as service distributions and

-C-2 -

queueing disciplines for the active queues are then added to the graphs as attributes of the
queues themselves. When all of the required information has been added to the graphs,

GPSM will then be used to translate the pictorial form of the simulation model into the

declarative, textual form expected by the PAWS simulation language. This completely

automatic translation results in a simulation program that can be compiled and executed
with PAWS in order to obtain statistical data and performance estimates of the system

design. Upon examining the resulting estimates, the analyst may choose to refine the
system design, modify the graphical representation of the model maintained by GPSM, and

repeat the cycle until the observed performance estimates obtained from PAWS meet the

desired (or required) performance.

2.0 Example GPSM Graph

The following sequence of pictures illustrates the construction and translation of a simple

GPSM simulation graph. The example we will use is a very simple model of a computer
system including memory, CPU, and two disk devices. In the interest of brevity we have

modeled each of the disk subsystems as a single service node. The pictures are a series of

snapshots of the GPSM graphics screen at various points during a typical interactive

session.

- C-3 -

-77-

Selecting a Node Icon

Placing the Node Icons

V -

Connecting the Modes with Arcs

I_ /

Squaring the Arcs

-C-4 -

alae 10l
Witieu S SW__ _

(us ms-"

-4

Opening the Memory Allocation Node
- ---

FS.Z5

04-

~i-
-7Lm..: :

Opening an Arc Definition

ICLI
iR1

ww all" sw a IwoI

The Completed Graph with Labels Displayed
--

-C-5 -

fimlat

T.-anslating the Graph to PAWS
--

3. GPSM Node Icon Summary

GPMIcons

~4'4

G P S N- c o --

. ...Sink

4hR- i~i' Reims ~.jj

5ela

